

EW: "Mass spectrometry in support of the environment, food, and health interaction and disease"

Characterization of non-intentionally added substances in food packaging nanofilms by analytical approaches based on HRMS

SUSFOOD

ERA-NET ON SUSTAINABLE FOOD PRODUCTION AND CONSUMPTION

ERANET SUSFOOD: Sustainable food production

Title: Improved resource efficiency throughout the post-harvest chain of fresh-cut fruits and vegetables

The Fruit and Vegetable Sector is an important segment of the European Agroindustry, with a weight of about 18% of the value of EU agricultural production

Fresh cut products:

This sector is a major user of water; about 70% of the water consumption is for cleaning and decontamination

Proper disinfection technology is required to ensure microbial safety avoiding at the same time the formation of disinfection by-products such as chlorinated chemicals

Growth of microorganisms is favoured by cutting/slicing, which remove the natural barrier

The quality of fresh-cut products also depends critically on packaging technology, which has to preserve good appearance and flavour, as well as meet safety requirement

Exporters of food products. Water stressed areas, Mediterranean basin.

CEREAL

washing technologies and packaging materials

Resource-efficient food processing:

- Water savings
- Reduce use of chemicals
- Valorization of food residues

Food quality & safety:

- Extension of shelf-life
- Avoid harmful disinfection by-products
- Good appearance and flavour

Context

These goals are to be achieved by the combination of the following **nanotechnologybased solutions for fresh-cut products**:

Introduction of **new membranes with biocidal functionality** to allow operating in closed loop and the reduction or elimination of chemical disinfectants.

Development of a **hybrid technology** in which the use of **ozone** combined with **ultrafiltration** using ceramic membranes with (eventually) active surface.

Shelf-life improvement:

Development of **packaging materials with antimicrobial** components, to increase shelf life and, to reduce wastes.

Engineering and Packaging

Lappeenranta University of Technology

UNIVERSITY

LULEÅ

OF TECHNOLOGY

onal de Investigació

IVV

Institute of chemistry and technology of polymers

CEREAL approach

To design the new packaging materials mainly monolayers by directing the structure and properties of the polymer matrix during crystallisation taking into consideration the material characteristics, the nanoparticles shape (rod shape and plate-like), the conditions of the manufacturing packaging process (extrusion and blowing).

To develop materials having improved physical, mechanical, barrier and antibacterial activity properties that contribute to extend shelf-life and quality of the food

Development of industrial scale processes for the synthesis and the posttreatments of metal oxide nano-powders, and fabrication of nanocomposites by melt processing.

CEREAL approach for packaging materials

Consiglio Nazionale delle Ricerche

1. Development

- 2. Optimization of the processing conditions
- 3. Assessment of properties of the materials :

filler/matrix interactions, thermal stability and rheological behaviour of the nanocomposites, optical properties, UV- absorption and degradation upon illumination, thermal and mechanical properties and processability

4. Evaluation of new materials

- Migration of substances
- Antimicrobial activity, shelf life prolongation and impact on fresh-cut produce quality. Relevant test strains: Listeria monocytogenes, E. coli, Pseudomonas fluorescens, Bacillus subtilis (spores) and Aspergillus niger (spores).

Development and evaluation of packaging materials

Polypropylene –based nanocomposites

(PP)-based nanocomposites functionalized with zinc oxide nanoparticles (ZnO NPs) and polylimonene (PL)

PPR3221 (wt%)	PL (wt%)	ZnONPs (wt%)	Composition
100	0	0	PPR
95	5	0	PPR/PL 95/5
97	0	3	PPR/ZnO 97/3
92	5	3	PPR/PL/ZnO 92/5/3

Biopolymer metal oxide nanocomposites

Nanocomposites :Poly(lactic acid) (PLA), PL, ZnO NPs, and ZnONPs coated with stearic acid

PLA (wt%)	PL (wt%)	ZnONPs (wt%)	mZnONPs (wt%)	Code
100	-	-	-	PLA
97	-	3	-	PLA/ZnO3%
95	-	5	-	PLA/ZnO5%
93	-	-	3	PLA/mZnO3%
95	-	-	5	PLA/mZnO5%
85	10	5	-	PLA/PL/ZnO

Composition of packaging materials

Packaging materials

Non-intentionally added substances (NIAS) are compounds present in food contact materials (FCM), not added for a technical purpose during manufacture.

Relevant issue for the food packaging industry

Impurities - bulk materials Reaction intermediates formed during manufacture Degradation of products. Contaminants

NIAS-Non-intentionally added substances

LC-HRMS

Mass Error (MS) < 5 ppm Score (MS) ≥ 75 %

Elucidation of the mass fragmentation

↓• MS/MS spectrum

Mass Error (MS/MS) < 15 ppm

Characterization

Screening analysis

Database

Test	Expected contact with food	Migration test conditions
OM1	Contact with frozen and cooled food	10 days @ 20℃
OM2	Long storage at room temperature + sho ing	ort heat- 10 days @ 40°C
OM3	Short heating	2 hours @ 70°C
OM4	High temperature use	1 hour @ 100°C
OM5	High temperature use (up to 121°C)	2 hours @ 100℃ Or 1 hour refluxing @ 121℃
OM6	Use of simulant A,B or C at a temperature than 40℃	e of more 4 hours @ 100°C or 4 hours refluxing
OM7	Use of fatty food at a high temperature	2 hours @ 175℃
Simulant	Ab	breviation

Test conditions for overall migration

Simulant	Abbreviation
Ethanol 10% (v/v)	Simulant A
Acetic acid 3% (w/v)	Simulant B
Ethanol 20% (v/v)	Simulant C
Ethanol 50% (v/v)	Simulant D1
Vegetable Oil	Simulant D2
Modified polyphenylene oxides, particle size 60-80 mesh, pore size 200 nm	Simulant E for dry foods

LC-QTOF-MS

Qualitative analysis

a Navigator x Compound List pe	😤 🖬 🖿 🎒 🖓 • 🗹 🗭 💟 🖄 • (* •) 🧬 💡	ethod Wizards Actions Configuration Tools Help [予译] 🛆 邱山 卅 🛧 🏦 山 難 🚇 🎑 🐼 💋 & 🕯	品 I Ravigator View
Momenta Control Contro Control Control			
Momenta Control Contro Control Control	īype 👻	- 描述 Automatically Show Columns 바깥 9개 9개 등급 😪 🔍 🧠	5. 56 m 7 1
11 column 10 column	iles ^		
1::::::::::::::::::::::::::::::::::::	omatograms		
10 0	TIC Scan - PS_PVP2_9 dias_NIAS_Roberto.d		
 			
with the field of the fie			· · · · · · · · · · · · · · · · · · ·
	can:2 (rt: 1.559 min) Sub - PS_PVP2_9 dias_NIAS_ 🗧	T	
and here starting in the PLP (PLP (PLP (PLP (PLP (PLP (PLP (PLP			
C::::::::::::::::::::::::::::::::::::		3 N, NPB3(2*HTDROXTETHTE) TRIDECTEAMINE	Cp0.3.rk/mbl/2/m10/00/1211112/mil/2012/024
4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, Rock C. 4: CONSidence PE, PPC, 2 des UB, CONSidence P		A Chromatogram Results	V is HIS Speedrum Dearth
Constructions Construltions Constructions Constructions<			
• #F8 Section (r. 158-152, me) Sec. PS, PL, Marked and Mark	CAPROLACTAM - PS_PVP2_9 dias_NIAS_Roberto.	। Z ↔ ‡ Q 😫 😻 🕊 🛧 🖄 Ð C 1 🕶 🔛	표 ▲ Δ 🖉 💑 % 🗞 🖄 😁 🚦 🕴 2 ↔ ‡ 🔍 🗄 🏘 🖉 🔂 연 💽 🏦 🖶 🖽 🗞 % 🦄 🖄 😁 🍎
All Concentration of the second of the secon	+ EIC(114.0913) Scan - PS_PVP2_9 dias_NIAS_Ro	x10 5 Cpd 5: CAPROLACTAM: +ESI EIC(114.0913) Scan PS_PVP2_9 dia:	fas_NIAS_Roberto.d x10 ⁵ +ESI Scan:1 (rt: 1.553 min) Frag=360.0V PS_PVP2_9 dias_NIAS_Roberto.d Subtract
add categories 1		4.4-	
displayer: 113/2 atogram 3 atogram 4 at		42	
mm a al a ss a ampounds a ampounds a ampounds a al a </td <td></td> <td>1.542</td> <td></td>		1.542	
um a al a ss a mounds a mounds a y compounds by formula a y compounds a abases a aray a additionation Steps a at Automation a additionation steps a at Automation a additionation steps additionation steps additionation steps additionation steps additionation steps additionation steps additionation steps additionationation steps additionation steps additionation steps additionationation steps additionation steps addititionation steps	od Explorer: Chusa_metodo.m X	4-	full-scap
A 4 s mounds mpounds to formula y Compounds 24 24 24 24 24 24 24 24 24 24	atogram	3.8-	
a 34	m	3.6-	
mpounds 72.999 78.9918 79.9934 102.0127 110.0004 mpounds 28			0.4-
angounds a a b<	l	3.4-	02-
npounds 3		3.2-	72.9368 75.9519 79.9420 84.9363 89.5075 97.9684 102.0127 110.0084
Propounds by Formula State Compounds State Sta		3	
mpounds by Formula Second / Compounds 26 24 22 24 22 24 22 25 24 26 24 27 28 28 29 29 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 25 25 26 27 27 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 20 29 21 29 24 29 24 29 24 20 24 26	mpounds	20	x10* +esi Scanz (ft: 1.505 min) +rag=360.0V CiD(20.0 FS_FVF2_9 dias_ViAS_R00etto.d Subtract
Y Compounds abase abase ary und Automation at	mpounds by Formula	2.8-	8. Fragmentation % 9608
24 ray wund Automation Steps st Automation 18 10 10 10 10 10 10 10 10 10 10	or Compounds	2.6-	
sry 0 22 2 2 2 2 2 2 2 2 2 2 2 2		2.4-	
rary	abase	22	5-72.9370
und Automation Steps 18 ist Automation 101	rary \varTheta		
und Automation Steps 1.6	ormulao	2-	
16 16 <td< td=""><td>und Automation Steps</td><td>1.8-</td><td>2- 81.9371</td></td<>	und Automation Steps	1.8-	2- 81.9371
t Automation		16	1- 84,9594 88,9013 101,9795 reactor
12- 1- 08- 04- 02- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-	Automation		0 10.5547 /9.9416 10.5547 10.5547
1 08 06 04 02 0 04 02 0 04 02 0 04 02 0 04 02 0 04 02 0 04 02 0 04 02 0 04 02 0 04 05 04 04 04 04 04 04 04 04 04 04		1.4-	x10 ⁵ +ESI Scan:3 (rt: 1.564 min) Frag=380.0V CID@20.0 PS_PVP2_9 dias_NIAS_Roberto.d Subtract
14 14 12 14 12 14 12 14 14 12 14 12 14 14 12 1 10 10587 1010587 1		1.2-	1.8-
08- 06- 04- 02- 0- 0.525- 04-02 0 02 04 05 08 1 12 14 15 18 2 22 24 26 28 3 32 34 35 38 4 42 44 45 48 0- 04-02- 0- 0-04-02 0 02 04 05 08 1 12 14 15 18 2 22 24 26 28 3 32 34 35 38 4 42 44 45 48 0- 0-04-02 0 02 04 05 08 1 12 14 15 18 2 22 14 26 28 3 32 34 35 38 4 42 44 45 48 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-		1	1.6-
0.6- 0.4- 0.2- 0- 0- 0- 0-0-0-0-0-0-0-0-0-0-0-0-0-0-			14
0.4- 0.2- 0- 0- 0-04-02 0 02 04 06 08 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48		0.8-	12-
04- 02- 0- 0-04-02 0 02 04 06 08 1 12 14 15 18 2 22 24 26 28 3 32 34 36 38 4 42 44 46 48			
02- 0 0826 0 - 04 - 02 0 02 04 06 08 1 1/2 1/4 1/6 1/8 2 2/2 2/4 2/6 2/8 3 3/2 3/4 3/6 3/8 4 4/2 4/4 4/6 4/8 0 - 04 - 02 - 77.0383 0 - 04 - 04 - 04 - 04 - 04 - 04 - 04 -		0.6-	
			1- 0.8-72 9369
			1 0.8-72,9369 0.6-94,0398
		0.4-	1 0.8 0.6 0.6 0.4 0.4 0.4 0.9 0.6 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
		0.4-	1 0.8 72.9369 0.6 94.038 0.6 94.038 0.4 81.9372 84.9594 0.2 101.0597

Screening analysis

LC-QTOF-MS

ethod Wizards Actions Configuration Tools Help

| 🕒 🕜 🏛 山 井 🛧 🍐 山 雅 🚇 🎯 🕼 & 「 🏭 Navigator View 盟 Compound Details View

Qualitative analysis

Compound List

🛗 Automatically Show Columns 🛛 🛗 🖓 🙀 🚘 👰 🛯 🎭 🖉 🔢 💽 🔳

	Cpd	7₽	Name \V \$	Label / 🏹 🛱	Show/Hide +	Formula 🖓 🕫	m/z ⊽+¤	Mass ⊽ 中	Mass (Tgt) マ+	Diff (Tgt, ppm) マ+	Score (Tgt) マ+	RT 🛛 🕈	Score ⊽ +	Mass (DB) 🖓 🛱	Diff (Tgt, mDa) ⊽
.	•	1	(2E)-3-PHENYLACRYLALDEHYDE (cinnamaldehyde)	Cpd 1: (2E)-3-PHENYLACRYLALDEHYDE (cinnamaldehyde)		C9 H8 O	133.0643	132.0571	132.0575	-3.29	86.47	14.148	86.47	132.0575	-0.
•		4	4,4'-Dihydroxybenzophenone	Cpd 4: 4,4'-Dihydroxybenzophenone		C13 H10 O3	215.0698	214.0624	214.063	-3.03	84.48	0.86	84.48	214.063	-0.
•		5	CAPROLACTAM	Cpd 5: CAPROLACTAM		C6 H11 N O	114.0912	113.0839	113.0841	-2.07	99.58	1.542	99.58	113.0841	-0.
٠		7	ERUCAMIDE	Cpd 7: ERUCAMIDE		C22 H43 N O	338.3411	337.3339	337.3345	-1.83	96.63	15.05	96.63	337.3345	-0.
•		8	LAUROLACTAM (AZA-2-CYCLOTRIDECANONE)	Cpd 8: LAUROLACTAM (AZA-2-CYCLOTRIDECANONE)		C12 H23 N O	198.1854	197.1779	197.178	-0.55	79.08	6.993	79.08	197.178	-0.
.		9	N,N-BIS(2-HYDROXYETHYL)TRIDECYLAMINE	Cpd 9: N,N-BIS(2-HYDROXYETHYL)TRIDECYLAMINE		C17 H37 N O2	288.2892	287.2819	287.2824	-1.91	95.11	8.049	95.11	287.2824	-0.

Screening analysis

- 0

Simulation of fragmentation

rH: Charge-Site Rearrangement; i: inductive cleavages; π: π-Bond Dissociation

Tentative assignation of fragment ions

LC-QTOF-MS

Polypropylene –films

RT	Molecular ion	Accurate mass $[H^+](m/z)$	Error (ppm), scope (%)	Product ion (loss)	Accurate mass $[H^+](m/z)$	Error (ppm)	NIAS (tentative identification)
Simu	ılant A						
0.8	$C_3H_6N_6$	127.0727	-0.82 ppm, >86%	$C_3H_3N_5$ (-NH ₃)	110.0467	-2.7	2,4,6-Triamino-1,3,5-triazine
1,5	C ₆ H ₁₁ NO	114.0913	−0.70 ppm, >98%	C_6H_9N (-H ₂ O)	96.0807	-8.9	Azepan-2-one
				$C_4H_7NO(-C_2H_4)$	86.0600	-8.0	
8,9	C ₉ H ₈ O	133.0648	1.50 ppm, >76%	C_8H_8 (-CO)	105.0698	5.0	(2E)-3-Phenylprop-2-enal
Simu	ılant B						
0.8	C ₃ H ₆ N ₆	127.0727	2.5 ppm, >65%	$C_3H_3N_5$ (-NH ₃)	110.0467	9.0	2,4,6-Triamino-1,3,5-triazine
1,5	C ₆ H ₁₁ NO	114.0913	-1.35 ppm, >85%	$C_6H_9N(-H_2O)$	96. 0807	-9.7	Azepan-2-one
				$C_4H_7NO(-C_2H_4)$	86.0600	7.6	
8,9	C ₉ H ₈ O	133.0648	0.3 ppm, >76%	C_8H_8 (-CO)	105.0698	7.9	(2E)-3-Phenylprop-2-enal

Characterization of NIAS

Data processing LC-QOrbitrap-MS

Compo	ounds 🍕	Compounds per File	Merged Features	Features	Custom Explanations	ChemSpider	Results	Mass L	ist Search	Results				Pri	incipal Cor	mpon	nent An	alysis		_	_	_										•
							Group A	Areas		6	E Log2	Fold Cha	r • 🖃	▲ (<	Data Sou	irce:	Compo	ounds •	XD	ata: PC 1	•	Y Data: PC	2 -	Center	r and scal	e 🗌 Use	normaliz	ed areas				
Ø	Checker	d Predicted Formula	Molecular Weigh	nt RT [min]	# ChemSpider Results	Area (Max.)					(Control, F7, B)	PLA, F3, A)	(PLA, F5, B) +		pounds gr of 265 item					nd retention	on time	·]								(A) P	LA/2	ZnC
							Control, FJ, A	PLA, F3, A	PLAUNU M. M	PLA_PL, F6, 8+	(Control, FL, A) / ((PLA_PL F4, A) / ()	(PLA_PL, F6, B) /	×	1		(E	B) PI	LA/I	PL/Z	nO								1	B) PL (B) c		
1 👳		C11 H21 N4 P S3	336.06740	9.799	3	119314	1.06e4 1	1.17e4 1.49	e4 1.10e4	1.19e5 8.55	a 0.31	0.35	3.43			•																
2 🗢		C17 H35 N O	269.27156	5 11.975	4	97521	2.05e4 2	2.10e4 2.64	e4 9.71e3	9.75e4 2.13	-0.05	0.33	3.33		(%	T																
3 👳		C9 H18 S3	222.05626	5 9.799	2	285715	2.62e4 3	3.44e4 2.94	e4 2.99e4	2.86e5 2.66e	-0.03	-0.23	3.26		(8.1%	1														(A)	con	trol
4 🗢		C6 H16 CI N2 O5 P	262.04869	8.322	4	228734	2.00e4 2	2.10e4 2.21	e4 2.66e4	2.29e5 1.86	4 0.10	0.07	3.10		2	1														()	0	
5 🕫		C9 H18 S3	222.05626	5 8.318	2	461044	4.05e4 4	4.44e4 4.67	e4 5.64e4	4.61e5 3.31	0.29	0.07	3.03		0d -1	1	р	rın	CIĶ	Dal	CC	mp	on	ent								
6 🕀		C6 H17 N8 P S2	296.07494	9.803	2	164875	1.77e4 2	2.00e4 2.17	e4 2.02e4	1.65e5 1.48	0.26	0.12	3.03			1	-		-			-										
7 🗢		C22 H43 N O2	353.32916	5 11.837	9	212010	2.75e4 3	3.08e4 2.64	e4 2.73e4	2.12e5 2.47	0.16	-0.22	2.96				a	nal	ys	IS												
8 🕀		C20 H37 N7 O2	407.30125	5 12.217	0	771023	1.49e5 1	1.44e5 1.09	e5 1.04e5	7.71e5 1.25	0.25	-0.39	2.90		-2	, 1																
9 🗇		C6 H17 N8 P S2	296.07494	10.778	2	180076	3.16e4 2	2.58e4 3.13	e4 2.48e4	1.80e5 3.60	-0.19	0.28	2.86		-2														(A)) PLA	/PL	/Zn/
10 🗢		C14 H29 N O	227.22481	1 11.027	9	234816	2.98e4 2	2.91e4 3.34	e4 3.25e4	2.35e5 3.24	-0.12	0.20	2.86																ìľ		0	
11 🗢		C11 H20 N10 S3	388.10417	7 10.779	1	225895	3.50e4 3	3.38e4 3.71	.e4 3.18e4	2.26e5 3.11	•4 0.17	0.13	2.83	¥		_			-8			-6	,	-4		-2	2		0	-, ,		2
(10								*											PC 1 (8	36.4%)							
Show R	lelated Ta	ables														•	• A,	Control	•	A, PLA	0	A, PLA	PL C	B, Con	trol	B, PLA	× 1	B, Pl	LA_PL			

Screening analysis

structural elucidation

N,N-Diethyldodecanamide

) lant (2/2)		F	imulant: A ilm: Control imulant: B	Film:	Ilant A PLA Ilant B	Simulant A Film: PLA_PL	Image: Simulant B Film: Control Mass Spectrum Image: Simulant B Film: Control Simul_B_PLA_PI_ZnO,#2363, RT=11.744 min, FTMS (+) C16 H33 N O as [M+H]+1			- Q
Film Samp Filter By: ON ON ON ON ON	ole (6/6) Simulant	20	F	ilm: PLA	Film:	PLA_PL		16 14 (9)(12	266.26321 [M+H]+1 1		
) (N)	Hide Rel Predicted C			ounds per File	Matched P	atterns Che	mSpider Results	Mass List Search Results			
	1 +	Checked	ΔMass [Da]	ΔMass [ppm] 0.44	CSID <u>17736</u>	C16 H33 N (Molecular Weight	Name N,N-Diethyldodecanamide	Structure	# References ¥	1521 11+1 279.15887 287.23545 279.24844 288.52160 280
Сотрон	2 😔		0.00011	0.44	<u>62629</u>	C16 H33 N (255.25621	Palmitamide	~~~~~ ^l ~,	70	
₽.	3 👳		0.00011	0.44	<u>66404</u>	C16 H33 N (255.25621	N-LauryImorpholine		37	
5 🖙 [6 🕾] Hide Rel Predicted (4 👳		0.00011	0.44	<u>68863</u>	C16 H33 N (255.25621	N,N-Dimethyltetradecanamide	*********	25	
₽ 1 ↔	5 👳		0.00011	0.44	<u>84518</u>	C16 H33 N (255.25621	N,N-Dibutyloctanamide		18	
	6 🖙		0.00011	0.44	<u>85623</u>	C16 H33 N (255.25621	N-Butyldodecanamide	*******	13	
	7 🗢		0.00011	0.44	<u>81853</u>	C16 H33 N (255.25621	N,N-Dipropyldecanamide		11	

Tentative fragmentation pathway N,N-Diethyldodecanamide

LC-QOrbitrap-MS

Biopolymer metal oxide nanocomposites

	PREC	URSOR ION				FRAGMENT	IONS
Rt	accurate mass value [M+H]*	formula proposed [M+H] ⁺	mass deviation* (ppm)	accurate mass value (<i>m/z</i>)	formula proposed	mass deviation* (ppm/mDa)	Candidate compounds
11.7	256.2635	C ₁₆ H ₃₄ NO	-1.2	116.1070 102.0913	C ₆ H ₁₄ NO C ₅ H ₁₂ NO	-2.6 / 0.3 -1.4 / 0.1	N,N-Diethyldodecanamide
11.9	331.2843	C ₁₉ H ₃₉ O ₄	-1.0	313.2737 99.0441	C ₁₉ H ₃₇ O ₃ C ₅ H ₇ O ₂	-2.3 / 0.7 -5.0 / 0.5	1-Palmitoylglycerol
12.2	359.3156	C ₂₁ H ₄₃ O ₄	-0.7	341.3050 285.2788	C ₂₁ H ₄₁ O ₃ C ₁₈ H ₃₇ O ₂	-0.6 / 0.2 -2.0 / 0.6	Glycerol stearate
12.5	310.3104	C ₂₀ H ₄₀ NO	-0.9	268.2999 210.1852	C ₁₈ H ₃₈ N C ₁₃ H ₂₄ NO	0.2 / 0.1 -3.4 / 0.7	N-[(9Z)-9-Octadecen-1-yl]acetamide

Characterization of NIAS; use of standards. Simulant B: 2.7 – 7.6 ng.g⁻¹

GC-HRMS

Screening analysis

GC-QTOF-MS

Characterization NIAS in PP films

of the parent compound

Phthalates

GC-QOrbitrap-MS

GC-QOrbitrap-MS

PLA films

	MENT IONS	FRAG				ION	RECURSOR	Р	
candidate compounds	mass deviation* (ppm/mDa)	formula proposed	accurate mass value (<i>m/z</i>)	HRF*	score*	SI*	formula proposed	accurate mass value (m/z)	Rt
tripropylene glycol diacrylate	1.4 / 0.2 1.6 / 0.1	C ₆ H ₉ O ₂ C ₃ H ₃ O	113.0597 55.0178	98.0	96.6	827	C ₁₅ H ₂₄ O ₆	300.1567	9.8
10-Heneicosene	0.5 / 0.03 0.3 / 0.02	С ₅ Н ₉ С ₆ Н ₁₁	69.0699 83.0855	99.0	96.4	820	C ₂₁ H ₄₂	294.3281	11.0
alpha-Tocopherol acetate	0.9 / 0.4 0.8 / 0.1	$C_{29}H_{50}O_2$ $C_{10}H_{13}O_2$	430.3801 165.0909	99.8	97.5	898	C ₃₁ H ₅₂ O ₃	472.3911	29.6

Characterization of NIAS

a-Tocopherol acetate

Data Review - Packaging 120K 15062016 [Unknown]

PLA/PL, simulant B

PLA/PL, simulant A

> LCA Philosophy

Environmental improvements are quantified by **comparing** the damages caused by a complete system using the newly developed technologies **against** reference systems **representative** from current-use technologies

Reference scenarios: Ecoinvent database European reference Life Cycle Database ELCD (European Commission's Joint Research Centre) Data provided by the CEREAL partners

Universidad de Oviedo

Montecarlo analysis *PLA/ZnO vs Ref*.

Midpoints show better performance in most cases for proposed package

Single score ReCiPe (H/H) shows that the use of PLA+ZnONP reduces the environmental impact of lettuce consumption by 10% while the package made from PP+ZnONP entails reductions of a 9%.

LCIA, life cycle impact assessment

The contribution of packaging to the whole environmental impact, including disposal stage, is not relevant

The production stage is by far the most environmental damaging

LCA, life cycle assessment

HRMS approach is useful for the optimization process and development of films

Migration of NIAS from PP based films in both simulants A and B, and from PLA films in simulant A and B.

NIAS detected are not included in the candidate EU list of chemicals to be evaluated for risks

Based on ZnONPs release test (ICP-MS), the nanopolymers composed of PP/ PL/ZnONPs, 92/5/3, and PLA/PL/ZnONPs provided the most suitable contact material with improved functionality

ZnONPs release test (ICP-MS): solubilization in the form of Zn^{2+} is below SML (25 mg.kg⁻¹)

PL additive appears to hinder Zn²⁺ release

mass Twin

EW: "Mass spectrometry in support of the environment, food, and health interaction and disease"

Thanks