

Optical chemical sensors for food freshness

Aleksandra LOBNIK, Polonca NEDELJKO, Matejka TUREL, Miha VRATIČ, Andreja GUTMAHER

18-20 April 2018, MassTwin Antwerpen Workshop

http://www.ios.si/

IOS, Institute of Environmental Protection and Sensors

2015.

application number P-201400120, European Patent Office CA G2, 25 Mar

organophosphates and method for preparation thereof": US Patent 2013/0251594A1; Appl. No.: 13/989,529; PCT/SI2011/000068;

United States and International Intelectual Property Law, 2013

Sensor Applications

DEFINITION OF SENSORS

Chemical Sensors are miniaturized analytical devices that can deliver real-time and on-line information on the presence of specific compounds or ions in complex samples.

Nanosensors – using nanomaterials or nanotechnologies to prepare nano sensor receptors

Chemosensors and Biosensors

Sensing versus Analyzing: the fundamental differences

Chemical Analysis	Chemical Sensing
sample treatment possible	sample treatment not desired or even not possible
result obtained after some time	result obtained on-line (= continuously)
results obtained in laboratory	results obtained in-situ
pH can be adjusted	pH cannot be adjusted usually
preconcentration possible	preconcentration not possible
includes manual operation	usually fully automatted
chemical & instrumental	instrumental only

Sensor Types

Electrical	Optical	Others
potentiometry	reflectometry	piezo-electric
coulometry (amperometry)	fluorescence, phosphorescence	quartz micro balance (QMB)
conductometry	surface plasmon resonance (SPR)	acoustic sensing
capacitive (impedimetry)	interferometry	calorimetry
	infrared, Raman, evanescent wave,	

Sensor Technology Involves ...

- * Spectroscopy, Electrochemistry, etc.
- * Polymer Chemistry
- * Physical Chemistry
- * Organic and Inorganic Materials
- * Interface chemistry
- * Biochemistry
- * Nanotechnology
- * Analytical Chemistry
- * Computational Chemistry (AANs)

"Optrode" - (from optical electrode) and "optode" (from Greek - the optical way)

- intrinsic optical property of the analyte is utilized for its detection
- indicator (or label) based sensing is used when the analyte has no intrinsic optical property INDICATOR CHEMISTRY
- (FOCSs) represents a subclass of chemical sensors in which an optical fiber is used aspart of the transduction element.

OPTICAL CHEMICAL/BIO- SENSOR system

analytical signal

FIBRE OPTICAL CHEMICAL SENSORS

• optical fiber is used to transmit the EM radiation

to and from a sensing region

• remote sensing

The major advantages:

- Optodes do not require a reference cell.
- Miniaturization.
- Remote sensing.
- No intereferences to strong magnetic fields/pressure.
- Multiple analysis with a single instrument.

Disadvantages:

- Ambient light can interfere.
- Limited long-term stability because of photobleaching or wash-out of the immobilized indicator.
- Mass transfer of the analyte from the sample into indicator phase is necessary in order to obtain a steady-state signal.
- Limited dynamic range.
- Selectivity of indicators and the immobilization techniques are to be improved.

ANALYTICAL ASPECTS OF SENSORS

- sensitivity and selectivity for the analyte
- broad dynamic range
- reversibility
- lack of frequent calibration
- fast response
- small size

Analytical aspects of sensors

- sensitivity in the range of interest
- selectivity for the analyte
- broad dynamic range
- reversibility
- lack of frequent calibration
- fast response
- inertness to sample matrix
- small size

Figures of Merit of Sensors

* Resolution (smallest difference in concentrations that is detectable)

The best chemical sensor ...

.....is the pH electrode since it

- * measures over 10 log concentration units
- * acts fully reversibly
- * is very stable over time
- * is not expensive
- * is sterilizable
- * has been optimized over 60 years.

Even though

- * it could be smaller
- * it could be even more selective

Design of optical chemical sensor "Indicator chemistry"

Indicators

Absorbance based:

Undergo colour change

Detection by "naked "eye

Detection by colorimetry

Luminescence based:

Fluorescence

Phosphorescence

Chemiluminiscence

Electroluminiscence

Detection by: UV lamp Intensity change Lifetime measurements

Fluorescent intensity and lifetime based "Lanthanide chelates"

- narrow, line-like emission peaks
- Iarge Stokes' shifts (≥ 200 nm)
- long lifetimes (from micro- to several mili-seconds range)
 → lifetime-based assays advantageous over intensity-based: higly immune to photobleaching, changes in fluorophore concentration, tubidity in the sample, optical misalignment, etc.
- long lifetimes enable gated detection mode
 → time-resolved luminescence

Time-resolved luminescence

Polymer carrier

Sol-gel process (Silica nanoparticles)

1. hydrolysis

 $Si(OR)_4 + H_2O \implies HO-Si(OR)_3 + ROH$

2. condensation:

 $HO-Si(OR)_{3} + HO-Si(OR)_{3} \implies HO-Si(OR)_{2}-O-Si(OR)_{2} + HOH$ $HO-Si(OR)_{3} + Si(OR)_{4} \implies Si(OR)_{3}-O-Si(OR)_{3} + ROH$

Monomers	Other metals
Si(OR') ₄	Zr(OR') ₄
R ₁ -Si(OR') ₃	R ₁ -Zr(OR') ₃
$R_1 R_2$ -Si(OR') ₂	$R_1 R_2$ -Zr(OR') ₂
R: aliphatic, aromatic	Ti, Sn

ADVANTAGES OF USING NANOMATERIALS FOR SENSORS

- Improved sensor characteristic (response time, sensitivity, etc.)
- In-vivo measurements,
- Small sample volumes,
- Multi-analyte sensing

Design of Optical nanosensor

Borisov SM, Klimant I (2008) Analyst 133:1302-1307

a, macromolecular nanosensors (dendrimers); b, NSs based on polymer materials and sol-gels; c, multi-functional core-shell systems; d, multi-functional magnetic beads; e, NSs based on quantum dots; f, NSs based on metal beads

Silica nanoparticles - Sol-gel process

1. hydrolysis

 $Si(OR)_4 + H_2O \implies HO-Si(OR)_3 + ROH$

2. condensation:

 $HO-Si(OR)_{3} + HO-Si(OR)_{3} \implies HO-Si(OR)_{2}-O-Si(OR)_{2} + HOH$ $HO-Si(OR)_{3} + Si(OR)_{4} \implies Si(OR)_{3}-O-Si(OR)_{3} + ROH$

Monomers	Other metals
Si(OR') ₄	Zr(OR') ₄
R ₁ -Si(OR') ₃	R ₁ -Zr(OR') ₃
$R_1 R_2$ -Si(OR') ₂	$R_1 R_2$ -Zr(OR') ₂
R: aliphatic, aromatic	Ti, Sn

Applications in Food safety: Food freshness

Food freshness depends on microbialogical activity

and

Various Biogenic amines are formed and released

Vino

Hrana in pijača

CO₂

(histamin, tiramin, triptamin, feniletilamin, agmatin, kadaverin, putrescin, spermidin)

Sir

(putrescin, kadaverin, histamin, tiramin, feniletilamin, spermin, spermidin, agmatin)

Riba/Tuna

(histamin, triptamin, kadaverin, feniletilamin, spermin, spermidin, tiramin, agmatin)

Meso/Klobasa

(triptamin, feniletilamin, putrescin, kadaverin, histamin, serotonin, tiramin, spermin, spermidin, agmatin

Sadje/Zelenjava

(dopamin, tiramin, putrescin, kadaverin, histamin, serotonin, agmatin, feniletilamin, spermidin, spermin, agmatin)

Amino acid $H_2N-CH-COOH$ $R-CH_2NH_2$ $R-CH_2NH_2$

METHODS FOR BIOGENIC AMINE DETERMINATION

Instrumental or classical methods

- High-performance liquid chromatography (HPLC)
- Thin-layer chromatography (TLC)
- Gas chromatography (GC)
- Micellar electrokinetic chromatography (MEKC)

Other methods

- electrochemical methods (capillary electrophoresis) (CE)
- enzymatic methods (biosensors)
- Optical methods
 - Optical chemical sensors (OCS)

Derivational reagents:

- dansyl chloride,
- benzoyl chloride,
- dansyl chloride,
- fluorescein,
- 9-fluorenylmethyl chloroformate,
- naphthalene-2,3-dicarboxaldehyde
- orthophthalaldehyde (OPA)

OPTICAL DETERMINATION OF BA BY O-PHTHALDIALDEHYDE (OPA)

OPTICAL DETERMINATION OF BA IN SOLUTION

OPTICAL DETERMINATION OF BA BY O-PHTHALDIALDEHYDE (OPA)

Wavalanath [nm]

OPTICAL DETERMINATION OF BA BASED ON SiO₂ PARTICLES –

Characterization of SiO₂ particles

TEM, SEM, FT-IR, BET, potentiometric titration, zeta potential

TEM (on the left side) and SEM (on the right side) images of SiO_2 particles which they have been prepared based on precursor TEOS with different molar ratios (R) : (a) R=4, (b) R=20, (c) R=40, (d) R=80.

OPTICAL DETERMINATION OF BA BASED ON SiO₂ PARTICLES

	AGMATINE			
SUMMARY	rison of the results based on the optical determination of AgmS solution with and without SiO ₂ -SH-OPA particles at pH 13			
Demonstern	Optical deter	Optical determination of AgmS		
Parameters	with OPA	with SiO ₂ -SH-OPA particles		
Fluorescent product	OPA-AgmS	SiO ₂ -SH-OPA-AgmS		
Spectral properties ($\lambda_{\rm ex}/\lambda_{\rm em}$)	340 nm / 473 nm	340 nm / 430 nm		
Concentration range	$6.0 \times 10^{-7} \text{ M} - 8.0 \times 10^{-6} \text{ M}$	$1.0 \times 10^{-6} \text{ M} - 1.0 \times 10^{-2} \text{ M}$		
The correlation coefficient r ²	0.9989	0.9989		
Linear equation	y = 1.53 + 81.47x	y = 5.43 + 0.71x		
LOD	2.5×10^{-7} M	7.3×10^{-7} M		
Response time	<u>20 m</u> in	2-3 min		
Buffer	pH 13	pH 13		

- The sensor is suitable for raw, untreated fish and chicken meat
- Color change is a measure of the usefulness of the meat see color scale)
- Response time is 30 minutes
- The sensor is useful when blue coloration is reached (spoiled meat) and can be used again if the initial color was yellow

Correlation to the microbiological measurements

- sensor absorption measurements on spectrophotometer (laboratory)
- monitoring of the activity of microbiological parameters bacteria Pseudomonas spp. (PSDM)
- signal of the sensor in correlation with the increase in the number of bacteria Pseudomonas spp.

Freshsens

PC

Spletni prikaz

OPTICAL DETERMINATION OF BA BASED

Freshness of the food in fridge

In the meet package

Design and characterization of azo (dicyanovinyl) dyes for the colorimetric detection of thiols and biogenic amines detection

Chemical structures of the azobenzene dyes CR-528 and CR-555 before and after the reaction with 2-mercaptoethanol (2-ME).

T.Mastnak, A. Lobnik, Sensors, 2018

Design and characterization of dicyanovinyl reactive dyes for the colorimetric detection of thiols and biogenic amines detection

Absorption spectra of CR-528 (7.2 × 10^{-6} M; A) and CR-555 (7.9 × 10^{-6} M; B) in the presence of various concentrations of 2-ME (from 0 to 4.8 × 10^{-4} M) in ethanol solution.

Design and characterization of dicyanovinyl reactive dyes for the colorimetric detection of thiols and biogenic amines detection

Spectrophotometric titrations (calibration curves) for sulfur-based analytes (NaHS, 2-ME; A, B) and for amine-based (BA) analytes (spermine, spermidine, ethanolamine; C, D); n = 3.

T.Mastnak, A. Lobnik, Sensors, 2018

Design and characterization of dicyanovinyl reactive dyes for the colorimetric detection of thiols and biogenic amines detection

Indicator	Analyte	Working Range (molL ⁻¹)	Respons e time (min)	Remark	[Ref.]
CR-528	Spermine	$3 \times 10^{-6} - 1.2 \times 10^{-4}$	30	A, ethanol solution	our work
	Ethanolamine	$5 \times 10^{-5} - 1 \times 10^{-3}$			
	NaSH	2×10 ⁻⁴ – 3×10 ⁻²			
	2-ME	3×10 ⁻³ – 3×10 ⁻¹			
CR-555	Spermine	2×10 ⁻⁶ – 2×10 ⁻⁵	30	A, ethanol solution	our work
	Spermidine	5×10 ⁻⁶ – 2.5×10 ⁻⁵			WORK
	Ethanolamine	2×10 ⁻⁵ – 3.1×10 ⁻⁴			
	NaSH	1.2×10 ⁻⁵ – 2.5×10 ⁻⁴			
	2-ME	1.5×10 ⁻⁴ – 1×10 ⁻²			

Organophosphate (pesticide) fluorescence sensor based on thin film and SiO₂ NP

A. Lobnik, EU patent, USA and Russian patent

Sensor configuration	t 95
Thin-film	600 s
Silica NP	12 s

Comparison of OP sensor characteristics

(A. Lobnik, Š. Korent Urek, EU, USA, Russia patents)

	Dye-doped thin films	Dye-doped nanoparticles
Limit of detection (mol/L)	6.7×10 ⁻⁷	0.17×10 ⁻⁹
Working range (mol/L)	6.9×10 ⁻⁷ - 6.9×10 ⁻³	0.17×10 ⁻⁹ - 2.3×10 ⁻⁷
Response time (s)	600	12

Luminiscence measurements of OP

Biosensing layer for OP determination

N. Francic, A. Lobnik, E. Efremenko, Bioscience and Technology, 2012)

- His₆-OPH (EC 3.1.8.1.) organophosphorous hydrolase
- Enzyme hydrolyzing a broad spectrum of organophosphorous compounds (OPCs) containing P–O, P–F and P–S bonds in the triesters of orthophosphoric acid
- Metalloenzyme: cofactors are Co²⁺ and other bivalent ions
 - Optimal activity :
 - ➡ T = 45 53 °C (pH 10.5)
 - pH between 10 in 11.5
 - High specific activity: ~ 5000 U/mg
- <u>hexahistidine (His₆) tag fused to OPH</u> \rightarrow improving the catalytic efficiency, especially towards P–S-containing substrates, and the stability under alkaline hydrolysis conditions compared to native OPH

Entraped His₆-OPH within hydrid SiO₂ sol-gel layer

Comparison of two types of biocatalyst films TEOS/GPTMS (R=188, P=5:1) and TMOS/MTMOS (R=148, P=1:2) for a) repeated use in the detoxification of POX. Conditions: 0.675 mM paraoxon, temperature 25 °C, 50-mM Na-carbonate buffer (pH 9.5); and b) stability of SiO₂ thin films with entraped His₆-OPH

Anal Bioanal Chem (2011) 401:2631-2638

J Sol-Gel Sci Technol (2015) 74:387–397

Silica particles with immobilized His₆-OPH for POX determination/detoxification

TEM micrographs of silica particles. (A-B), SEM microgram (C), and particle size distribution (D) of MPS 5 particles.

Silica particles with immobilized His₆-OPH for POX determination/detoxification

Fig. 4: Cycles of usage (a) and stability (b) of silica particles with immobilized His_6 -OPH.

Mesoporous TiO₂ thin films as efficient enzyme carriers for paraoxon determination/detoxification

Schematic representation of the preparation route of His₆-OPH-conjugated mesoporous titania thin films trough CDI mediated reaction.

Mesoporous TiO₂ thin films as efficient enzyme carriers for paraoxon determination/detoxification

Figure Cycles of usage for covalently attached His₆-OPH, TiF-10 and TiF-bim (black and grey squares), and adsorbed His₆-OPH, TiF-10, TiF-10 and TiF-bim (black and grey circles). Measurements were performed with selected 50 mm² bio-functionalized mesoporous titania thin-films with covalently attached His₆-OPH at 20 °C and pH 10.5 (CB, 50 mM). Substrate: 0.3 mM paraoxon.

Figure Stability of titania bio-sensing film (TiF-9) with covalently attached enzyme several days after film preparation.

 $\begin{array}{c} 80 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ Day \end{array}$

Design and investigation of optical properties of *N*-(Rhodamine-B)-lactam-ethylenediamine (RhB-EDA) fluorescent probe

(E. Soršak, A. Lobnik, Sensors 2018)

The linear range for Ag⁺ ions` detection is from 0.43·10⁻³ to 10⁻⁶ M.

Applications in water: Determination of phosphate (P) using europium-tetracycline complex (EuTc)

(A. Durkop, M. Turel, O.S. Wolfbeis, A. Lobnik, Anal. Chim Acta, 2006)

Determination of copper (Cu) using terbium-ligand complex (TbL₂)

Spectral properties of TbL₂ in water solution

RESYNTEX

A new circular economy concept: from textile waste towards chemical and textile industries feedstock

> Prof. dr. Aleksandra Lobnik, UMARI, IOS, Ltd. Resyntex Co-coordinator, Technical Manager

Resyntex Partners

COORDINATOR: SOEX CO-COORDINATOR: IOS

20 project partners from 10 different EU members: industrial associations, enterprises, small and medium-sized enterprises, research institutions.

Together, we create an effective model for the whole value chain.

The RESYNTEX project is considering and demonstrating the whole value chain starting from

RESYNTEX PROJECT WORK STRUCTURE

What are the Aiams of the Resyntex project

As a result, economic advantages can be provided besides prevention of industrial environmental problems

	Feedstock from textile waste	Obtained chemical products from symbiosis
	Protein hydrolysates	Adhesives used for the manufacturing of wood- based panels (CHIMAR)
	Depolymerized cellulose (sugars in solution)	Cellulosic ethanol manufacturing based on the PROESA® technology (CTXI)
	Polyamide oligomers (mainly polyamide 6 and 66)	Hydrogenolysis/hydrolysis of PA6 and PA6,6 leading to hexanoic acid, N-pentylamine (also known as amylamine), aminohexanoic acid, caprolactam and other important chemical intermediates, (Arkema)
1		diesters (e.g. as solvents) and hexamethylenediamine (Arkema)
* * * Co-funded by the European Union's Horizon 2020 researc and innovation programme	PET monomers (terephthalic acid, ethylene glycol)	Plastic bottles constituted of PET from the reaction of terephthalic acid (PTA) and ethylene glycol (EG) (CTXI)

NANOAPP 2019

Conference Bridging Research and Industry http://nanoapp.ios.si

Nanomaterials & Applications

June / 2019, Ljubljana / Slovenia