

Accurate mass screening and identification of emerging contaminants & their transformation products in environmental samples

Dimitra A. Lambropoulou

- Assist. Professor, Department of Chemistry, Aristotle University of Thessaloniki,
- Thessaloniki, 54124, Greece,
- e-mail: <u>dlambro@chem.auth.gr</u>, Tel.:+302310-997687, Fax: +30-2310-997687

What Makes a "Contaminant of Emerging Concern"?

In general, **ECs** are a structurally diverse and heterogeneous group of chemical compounds, which have widely varying fate properties and adverse effects on environmental ecosystems **and can be classified into the following categories**:

- * "new" ECs, which are chemicals that are recently manufactured and suddenly appear everywhere, and therefore, are not currently covered by existing regulations or legislation
- * "old" ECs, which are the ones that were actually around for several decades, but simply were not under regular investigation or for which analytical methods did not exist until recently.
- * "ECs within complex mixtures", such as industrial effluents, oil residues, hospital effluent, etc. of which either the mixture itself or newly identified (subgroups) of components within may be considered ECs.

Emerging pollutants NORMAN

Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

enhances the exchange of information on emerging environmental substances

web-based databases for the collection & evaluation of data

EMPODAT: a database of geo-referenced monitoring / occurrence data on emerging substances;

NORMAN MassBank: a database of mass spectra of unknown or provisionally identified substances.

NORMAN Suspect List Exchange: a central website to access various lists of substances for suspect screening.

Emerging pollutants

(Richardson and Ternes, Anal. Chem. 2011, 83, 4614)

Anthropic Source	Industrial Source			
Personal Care Products Musks Sunscreens/UV filters Disinfectants	Perfluorinated compounds (PFCs) Brominated Flame Retardants Benzotriazole, Dioxane, Siloxane Perchlorate Nanomaterials			
Therapeutic drugs Pharmaceuticals Hormones Transformation products	Food or Water Production Artificial sweeteners (Sucralose) Antimony from plastics or petroleum refineries Water disinfection by-products			
Illicit drugs Microorganisms	Agricolture Pesticides transformation products Algal toxins			

Transformation Products (TPs)

New emerging contaminants in the water cycle

Transformation Products of ECs?

- Despite the increasing number of published studies covering EC input, occurrence, fate and effects, there is still a lack of understanding and knowledge about these substances in the aquatic environment.
- Even more, we know very little about the impacts of the environmental exposure to trace concentrations of their *transformation products* (TPs) and/or *metabolites*, but the detection of TPs in the environment is worrying.
- TPs of ECs in aquatic environments are still rarely considered in water quality and chemical risk assessment, although they have been found in concentrations that are of concern.
- Since many different TPs can potentially be formed in the environment and analytical standards are typically lacking for these compounds, knowledge on the prevalence of TPs in aquatic environments is fragmentary.

Transformation Products of Emerging Contaminants in the Environment: Analysis, Processes, Occurrence, Effects and Risks

Transformation Products of Emerging Contaminants in the Environment

Dimitra A. Lambropoulou (Editor),

Leo M. L. Nollet (Editor) ISBN: 978-1-118-33959-6 964 pages February 2014

Transformation Products of Emerging Contaminants in the Environment Analysis,

WII FY

WILEY-VCH

2014

Processes. Ocourrence, Effects and Risks

Transformation Products of Emerging Contaminants

Dimitra A. Lambropoulou Environmental Pollution Control Laboratory, Department of Chemistry Aristotle Liniversity of

Leo M. L. Nollef iogeschool Gent, Belguin

Editors:

hessaloniki

 Emerging contaminants Include pharmaceuticals ersonal care products eterinary medicines pesticides, brominated flame tardants, perfluorinated compounds, disinfectants and engineered nanoparticles products), rather than primary compounds

 Also ortifical for European REACH regulations · Important for Industries Involved in chemistry, toxicology, water and Includes contributions from all the key International researcher

One of the first books to cover transformation products (i.e. breakdow Hot area in environmental research, because of their adv human health and environment

Classification of Transformation Products of ECs?

Proposed Transformation pathways

Bezafibrate

CH₃O ĊН₃ юн

Carbamazepine

`он

Diclofenac

Furosemide

Hydrochlorothiazide

 H_2N

Proposed Transformation pathways

Identification approaches – laboratory studies

Simulation of the transformation processes in batch experiments under well-defined conditions with appropriate controls is a very common first approach for the identification of TPs.

Batch experiments can be applied under biotic and abiotic conditions at high concentrations of the parent ECs.

Identification of TPs in WWTs, underground water, natural water, drinking water

Identification approaches – analytical techniques

Nowadays, liquid chromatography (LC) coupled to MS (LC-MS) using a variety of mass analyzers is the technique of choice for the investigation of ECs and TPs in environmental samples. LC is a suitable chromatographic technique **for polar, thermolabile compounds**, thus for the identification of TPs, which are generally more polar than their parent molecules.

GC-MS vs. LC-MS

Mass analyzers commonly employed

time-of-flight

linear ion trap-Orbitrap or quadrupole-Orbitrap

quadrupole time-of-flight

Flow chart of screening procedure of TPs

There are various workflows in the literature

for the identification of TPs,

depending indispensably on the instrumentation and

the available software

- Bletsou, A.A., Jeon, J., Hollender, J., Archontaki, E., Thomaidis, N.S. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment (2015) TrAC
 Trends in Analytical Chemistry, 66, pp. 32-44.
- E.L. Schymanski, J. Jeon, R. Gulde, K. Fenner, M. Ruff, H.P. Singer, et al., Identifying small molecules via high resolution mass spectrometry: communicating confidence, Environ. Sci. Technol. 48 (2014) 2097–2098.
- Aurea C. Chiaia-Hernandez & Emma L. Schymanski & Praveen Kumar & Heinz P. Singer & Juliane Hollender Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments, Anal Bioanal Chem, September 2014.
- C. Hug, N. Ulrich, T. Schulze, W. Brack, M. Krauss, Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening, Environ. Pollut. 184 (2014) 25–32.
- Dimitra A. Lambropoulou (Editor), Leo M. L. Nollet (Editor), Transformation Products of Emerging Contaminants in the Environment: Analysis, Processes, Occurrence, Effects and Risks, ISBN: 978-1-118-33959-6, 964 pages, February 2014

Target or Non-target analysis workflow

Workflows of screening procedure of TPs

(a) target analysis (Known TPs), which is based on the determination of already known

TPs, and identification is carried out with standard solutions;

(b) **suspect screening** (Known unknown TPs), with a list of possible TPs assembled from

the literature or from prediction models, and the samples are screened for those

candidates; and,

(c) non-target screening (Unknown TPs - de novo identification of truly novel

compounds), with identification of novel TPs being carried out with sophisticated post-

acquisition data tools and supplementary analytical techniques.

Flow chart of screening procedure of TPs

A.A. Bletsou et al./Trends in Analytical Chemistry 66 (2015) 32–44

Suspect screening

- Suspect screening is the technique of choice for the identification of TPs, when the confirmation of the analytes with a reference standard is impossible, but molecular formula and structure of suspected molecules can be predicted
 In suspect screening, an important step of the identification workflow is the prediction of possible TPs using computational
 - (in silico) prediction tools.

Data processing for screening

□ Peak detection by extracting those ions matched with entries in a database

• Can be psuedo molecular ions and fragments

□ Recognition is based upon measurement of:

- Accurate mass
- Isotope pattern
- Retention time (if available)
- A response threshold

Mass analyzers commonly employed High Resolution Mass Spectrometers

The benefits of high resolution MS in high throughput screening of TPs

AOPs (e.g. Photocatalysis)

Target Compounds / Photolysis/ AOPs (32 Parent Compounds)

Ana	gesics-anti-	
infla	immatories	

Diclofenac Ketoprofen Ibuprofen Paracetamol Nimesulide Naproxen Tramadol

Antibiotics

Ciprofloxacin Moxifloxacin Norfloxacin Erythromycin Lincomycin Sulfadiazine Sulfamethoxazole Trimethoprim

Phsychiatricsantidepressants

Bupropion Carbamazepine Duloxetine Fluvoxamine Olanzapine Risperidone Sertraline Venlafaxine

Beta - Blockers

Atenolol

Metoprolol

Nadolol

Pindolol

Propranolol

Cytostatics

Cytarabine 5-Flouoruracil

Antidiabetics

Metformin

Beta-agonists

Salbutamol

Database used for TPs of pharmaceuticals

A home-made database >350 compounds

(corresponding to metabolites/TPs)

A customized database was compiled containing :

- TPs for which reference standards were available
- compounds identified in experiments performed at laboratory under laboratorycontrolled conditions

A second home-made database was also compiled, including :

theoretical exact masses of human metabolites /TPs reported in the literature

The presence of 28 TPs/human metabolites was confirmed in the samples

Photocatalysis of Venlafaxine

TDe	Dt	Elemental		Mass (m/z)		EFFOF
115		- Formula	Theor	Exper	- mDa	ppm
VNF	8.72	C17 H27 N O2	278.2115	278.2115	0.05	-0.20
342A	3.06	C17 H26 N O5	342.1911	342.1915	0.39	1.12
342B	3.21	$C_{17}H_{26}NO_5$	342.1911	342.1915	0.39	1.12
342C	3.40	C17 H26 N O5	342.1911	342.1915	0.39	1.12
342D	3.55	C17 H26 N O5	342.1911	342.1915	0.39	1.12
342E	6.21	C17 H26 N O5	342.1911	342.1915	0.39	1.12
342F	11.21	C17 H26 N O5	342.1911	342.1915	0.39	1.12
340A	3.33	C17 H26 N O5	340.1754	340.1758	0.33	0.99
340B	3.88	C17 H26 N O5	340.1754	340.1758	0.33	0.99
326A	5.82	C17 H28 N O5	326.1950	326.1950	-1.20	-3.68
326B	6.24	C17 H28 N O5	326.1950	326.1950	-1.20	-3.68
326C	6.66	C17 H28 N O5	326.1950	326.1950	-1.20	-3.68
326D	7.03	C17 H28 N O5	326.1950	326.1950	-1.20	-3.68
324A	3.94	C17 H26 N O5	324.1805	324.1794	-1.15	-2.43
324B	4.74	C17 H26 N O5	324.1805	324.1794	-1.15	-2.43
324C	6.36	$C_{17} H_{26} N O_5$	324.1805	324.1794	-1.15	-2.43
324D	6.57	$C_{17} H_{26} N O_5$	324.1805	324.1794	-1.15	-2.43
312A	3.56	$C_{16} H_{26} N O_5$	312.1805	312.1796	-0.95	-3.04
312B	3.70	C16 H26 N O5	312.1805	312.1796	-0.95	-3.04
312C	4.38	$C_{16} H_{26} N O_5$	312.1805	312.1796	-0.95	-3.04
310A*	3.18	C16 H24 N O5	310.1648	310.1638	-1.10	-3.54
310B*	3.53	$C_{16}H_{24}NO_5$	310.1648	310.1638	-1.10	-3.54
310C*	7.74	$C_{16}H_{24}NO_5$	310.1648	310.1638	-1.10	-3.54
310A	5.25	$C_{17}H_{28}NO_4$	310.2012	310.2007	-0.58	-1.88
310B	5.49	$C_{17} H_{28} N O_4$	310.2012	310.2007	-0.58	-1.88
310C	6.21	C17 H28 N O4	310.2012	310.2007	-0.58	-1.88
310D	6.56	C17 H28 N O4	310.2012	310.2007	-0.58	-1.88
310E	7.17	$C_{17} H_{28} N O_4$	310.2012	310.2007	-0.58	-1.88
310F	8.55	$C_{17} H_{28} N O_4$	310.2012	310.2007	-0.58	-1.88
310G	8.61	$C_{17} H_{28} N O_4$	310.2012	310.2007	-0.58	-1.88
308A	5.69	$C_{17} H_{28} N O_3$	308.1856	308.1846	-1.03	-3.35
308B	5.72	$C_{17} H_{28} N O_3$	308.1856	308.1846	-1.03	-3.35
308C	5.85	C ₁₇ H ₂₈ N O ₃	308.1856	308.1846	-1.03	-3.35
308D	6.36	$C_{17} H_{28} N O_3$	308.1856	308.1846	-1.03	-3.35
306A	5.31	$C_{17} H_{24} N O_4$	306.1699	306.1693	-0.68	-2.2
306B	6.08	$C_{17} H_{24} N O_4$	306.1699	306.1693	-0.68	-2.2
296A	2.8	$\begin{array}{c} C_{16} H_{26} N O_4 \\ \end{array}$	296.1856	296.1855	-0.13	-0.46
296B	7.56	C16 H26 N O4	296.1856	296.1855	-0.13	-0.46

42 TPs (OH-isomers, demethylated, dehydrated and further oxidized TPs etc)

D. Lambropoulou et al. / Journal of Hazardous Materials, February 2017, Pages 513-526

Photocatalysis of Venlafaxine

		Elemental	<u>Mass (m/z)</u>				
TPs	Rt	Formula	Theor.	Exper.	mDa	ppm	DBE
VNF	8.72	$C_{17} H_{27} N O_2$	278.2115	278.2115	0.05	-0.20	4.5
		C ₁₇ H ₂₆ N O	260.2008	260.2012	0.31	1.87	5.5
		C ₁₆ H ₂₄ N O	246.1852	246.1861	0.86	3.49	5.5
		C ₁₅ H ₁₉ O	215.1430	215.1437	0.66	3.06	6.5
		C ₈ H ₉ O	121.0647	121.0644	-0.39	-3.23	4.5
		C ₇ H ₉	93.0695	93.0698	-0.37	-4.04	3.5
294C	7.71	$C_{17} H_{28} N O_3$	294.2063	294.2053	-1.07	-3.64	4.5
		$C_{17} H_{26} N O_2$	276.1958	276.1951	-0.71	-2.55	5.5
		C ₁₇ H ₂₄ N O	258.1852	258.1863	1.05	4.10	6.5
		$C_{15} H_{19} O_2$	231.1379	231.1372	-0.75	-3.27	6.5
		C ₁₄ H ₁₅ O	199.1111	199.1117	-0.64	-3.22	7.5
292B	6.41	$C_{17} H_{26} N O_3$	292.1907	292.1899	-0.82	-2.81	5.5
		$\rm C_{17} \ H_{24} \ N \ O_{2}$	274.1801	274.1797	-0.46	-1.66	6.5
		$C_{15} H_{17} O_2$	229.1223	229.1215	-0.81	-3.52	7.5
		C ₈ H ₉ O	121.0647	121.0644	-0.39	-3.23	4.5
274	7.27	$C_{17} H_{24} N O_2$	274.1801	274.1793	-0.86	-3.12	6.5
		C ₁₅ H ₁₇ O ₂	229.1223	229.1216	-0.71	-3.08	7.5
		C ₁₅ H ₁₅ O	211.1117	211.1113	-0.44	-2.09	8.5
		$C_{14} H_{11}$	179.0849	1/9.0855	-0.62	-3.50	9.5
		$C_{12} H_{11} U$	171.0804	171.0802	-0.24	-1.41	7.5
		C ₈ H ₉ O	121.0047	121.0011	-0.57	-5.25	ч.5
O-DES-	7.33	Cry Has N Oa	264,1958	264,1954	-0.40	-1.54	4.5
VNF		C ₁₄ H ₂₄ N O	246.1852	246.1861	0.86	3.49	5.5
		C ₁₄ H ₁₇ O	201.1273	201.1270	-0.39	-1.94	6.5
		C ₁₁ H ₁₁ O	159.0822	159.0824	1.20	2.46	6.5
		$C_9 H_9 O$	133.0647	133.0644	-0.39	-2.94	5.5
		C ₈ H ₉ O	121.0647	121.0644	-0.39	-3.23	4.5
		C ₇ H ₇ O	107.0491	107.0489	-0.241	-2.25	4.5

nass

D. Lambropoulou et al. / Journal of Hazardous Materials, February 2017, Pages 513-526

Photocatalysis of Venlafaxine

D. Lambropoulou et al. / Journal of Hazardous Materials, February 2017, Pages 513-526

Þ

Photocatalysis of Tramadol

R _t	Molecular	m/z [M +H] ⁺ /	Δ (ppm)	MS ² fragmentation	RDB	
	Formula	Fragments	(RDB)	C		
7.30	$C_{16}H_{26}NO_2$	[M+H] ⁺ 264.1949 (TRA)	-3.617 (4.5)	246.1852 C ₁₆ H ₂₄ NO (-H ₂ O)	0.565 (5.5)	
5.60	$C_{16}H_{26}NO_3$	[M+H] ⁺ 280.1888 (280-A)	-1.880 (4.5)	262.1803 C ₁₆ H ₂₄ NO ₂ (-H ₂ O)	0.114 (5.5)	
		264.1941 C ₁₆ H ₂₆ NO ₂	-1.746 (4.5)	217.1225 $C_{14}H_{17}O_2$ (- H_2O - C_2H_7N)	0.662 (6.5)	
		250.1785 C ₁₅ H ₂₄ NO ₂	-1.626 (4.5)			
6.24	$C_{16}H_{26}NO_3$	[M+H] ⁺ 280.1894 (280-B)	-1.300 (4.5)	262.1804 C ₁₆ H ₂₄ NO ₂ (-H ₂ O)	0.894 (5.5)	
		264.1946 C ₁₆ H ₂₆ NO ₂	-4.715 (4.5)	$217.1221 C_{14}H_{17}O_2(-H_2O - C_2H_7N)$	-1.134 (6.5)	
				149.0237 C ₈ H ₅ O ₃	2.748 (6.5)	14 TD_{c}
6.62	$C_{16}H_{26}NO_3$	[M+H] ⁺ 280.1903 (280-C)	-1.535 (4.5)	262.1804 C ₁₆ H ₂₄ NO ₂ (-H ₂ O)	0.834 (5.5)	14 113
		264.1946 C ₁₆ H ₂₆ NO ₂	-4.715 (4.5)	217.1224 C ₁₄ H ₁₇ O ₂ (-H ₂ O -C ₂ H ₇ N)	0.524 (6.5)	(OH-
				149.0241 C ₈ H ₅ O ₃	5.096 (6.5)	
6.84	$C_{16}H_{26}NO_3$	[M+H] ⁺ 280.1904 (280-D)	-1.250 (4.5)	262.1804 C ₁₆ H ₂₄ NO ₂ (-H ₂ O)	0.834 (5.5)	isomers,
		264.1946 C ₁₆ H ₂₆ NO ₂	-4.715 (4.5)	$217.1224 C_{14}H_{17}O_2(-H_2O - C_2H_7N)$	0.524 (6.5)	demethyla
				149.0230 C ₈ H ₅ O ₃	-2.084 (6.5)	uemetnyia
7.06	$C_{16}H_{26}NO_3$	[M+H] ⁺ 280.193 (280-E)	-1.607 (4.5)	262.17996 C ₁₆ H ₂₄ NO ₂ (-H ₂ O)	-0.017 (5.5)	ted.
		264.1946 C ₁₆ H ₂₆ NO ₂	-4.715 (4.5)	$217.1218 C_{14}H_{17}O_2(-H_2O - C_2H_7N)$	-2.470 (5.5)	
				149.0235 C ₈ H ₆ O ₃	1.070 (6.5)	oxiaizea
5.43	$C_{16}H_{24}NO_3$	[M+H] ⁺ 278.1887 (278)	-4.586 (5.5)			TDs atc)
4.98	$C_{16}H_{26}NO_4$	[M+H] ⁺ 296.1844 (296A)	-4.101 (4.5)	278.1749 C ₁₆ H ₂₄ NO ₃ (-H ₂ O)	-0.504 (5.5)	II S CLCJ
		278.1738 C ₁₆ H ₂₄ NO ₃	-4.566 (5.5)	260.1635 C ₁₆ H ₂₂ NO ₂ (-2H ₂ O)	-3.826 (6.5)	
		264.1946 C ₁₆ H ₂₆ NO ₂	-4.525 (4.5)	$223.1567 C_{13}H_{21}NO_2(-C_3H_5O_2)$	-0.092 (4.0)	
				114.0913 C ₆ H ₁₂ NO (-C ₁₀ H ₁₄ O ₃)	-0.180 (1.5)	
5.89	$C_{16}H_{26}NO_4$	[M+H] ⁺ 296.1844 (296B)	-4.101 (4.5)	278.1749 C ₁₆ H ₂₄ NO ₃ (-H ₂ O)	-0.504 (5.5)	
		280.1894 C ₁₆ H ₂₆ NO ₃	-4.747 (4.5)	260.1635 C ₁₆ H ₂₂ NO ₂ (-2H ₂ O)	-3.826 (6.5)	
		264.1945 C ₁₆ H ₂₆ NO ₂	-5.093 (4.5)	$223.1567 C_{13}H_{21}NO_2(-C_3H_5O_2)$	-0.092 (4.0)	
				114.0913 $C_6H_{12}NO(-C_{10}H_{14}O_3)$	-0.180 (1.5)	
7.92	$C_{16}H_{26}NO_3$	[M+H] ⁺ 280.1893	-5.069 (4.5)	262.1802 C ₁₆ H ₂₄ NO ₂ (-H ₂ O)	0.208 (5.5)	
		(N-OX-TRA)		201.1274 C ₁₄ H ₁₇ O (-C ₂ H ₇ NO -H ₂ O)	0.041 (6.5)	
				135.0441 C ₈ H ₇ O ₂ (-C ₈ H ₁₉ NO)	0.548 (5.5)	

M. Antonopoulou, I. Konstantinou / Applied Catalysis A: General 515 (2016) 136–143

Tramadol Transformation pathways....

M. Antonopoulou, I. Konstantinou / Applied Catalysis A: General 515 (2016) 136–143

Cytarabine Transformation Products

t _R	Code	Pseudo-	Theoretica	Experimen	Δ	RDB
(min)	name	molecular	l tal		(рр	E
		ion formula	m/z	m/z	m)	
			[m+H]+	[m+H]*		
1.51	CY	$C_9H_{14}N_3O_5$	244.0928	244.0922	2.4	4.5
		$C_4H_6N_3O$	112.0505	112.0506	-0.6	3.5
0.79	TPI	$C_4H_6N_3O$	112.0505	112.0505	-0.3	3.5
		$C_4H_3N_2O$	95.0240	95.0233	-7.25	4.5
		$C_3H_5N_2$	69.0447	69.0441	-9.05	2.5
0.83	TP2	$C_9H_{14}N_3O_8$	292.0775	292.07 73	0.8	4.5
		$C_9H_{12}N_3O_7$	274.0670	274.0659	-3.9	5.5
		$C_8H_{11}N_2O_6$	231.0612	231.0601	-4.6	4.5
0.95	TP3	$C_9H_{14}N_3O_6$	260.0877	260.0874	0.5	1.2
		$C_9H_{12}N_3O_5$	242.0771	242.0764	-3.08	5.5
		$C_4H_6N_3O$	112.0505	112.050 0	-0.3	3.5
1.25	TP4	$C_9H_{14}N_3O_6$	260.0877	260.0874	0.5	1.2
		$C_9H_{12}N_3O_5$	242.0771	242.0764	-3.08	5.5
		$C_4H_6N_3O$	112.0505	112.050 0	-0.3	3.5
0.75		$C_9H_{14}N_3O_7$	276.0826	276.082 0	2.3	4.5
		$C_9H_{12}N_3O_6$	258.0721	258.0718	-1.0	5.5
0.74	TP5	$C_9H_{14}N_3O_8$	292.0775	292.07 60	5.3	4.5
		$C_9H_{12}N_3O_7$	274.0670	274.0659	-3.9	5.5
		$C_8H_{11}N_2O_6$	231.0612	231.0601	-4.6	4.5
0.83	TP7	$C_9H_{11}N_2O_8$	275.0510	275.0508	-0.7	5.5
0.87	TP8	$C_9H_{13}N_2O_8$	277.0666	277.0662	-1.6	4.5
		$C_9H_{11}N_2O_7$	259.0561	259.0565		
0.91	TP9	$C_9H_{11}N_2O_8$	275.0510	275.0508	-0.7	5.5
0.95	TPI0	$C_9H_{13}N_2O_8$	277.0666	277.0662	-1.6	4.5
		$C_9H_{11}N_2O_7$	259.0561	259.0560	-0.59	5.5
1.16	TPII	$C_9H_{12}N_3O_7$	274.0666	274.0667	-1.0	5.5
0.78	TPI2	$C_9H_{16}N_3O_7$	278.0983	278.0979	-1.4	3.5
		$C_9H_{14}N_3O_6$	260.0877	260.0874	0.5	1.2
		$C_4H_6N_3O$	112.0505	112.050 3	-2.1	3.5

12 TPs (OH-isomers, etc)

mass

T\//IN

Cytarabine Transformation pathways....

A. Koltsakidou et al. / Chemical Engineering Journal 316 (2017) 823–831

32

он ТРб (а)

5-Flouorouracil Transformation pathways..... mass

t _R (min)	Code name	Pseudo-molecular ion formula	Theoretical m/z [m-H] ⁻	Experimental m/z [m-H] ⁻	Δ (ppm)	RDBE
2.0	5-FU	C ₄ H ₂ FN ₂ O ₂	1 29.0 106	129.0105	0.3	4.5
1.0	TPI	$C_4H_3N_2O_4$	143.0098	I 43.0 103	-3.0	4.5
1.2	TP2	C ₄ HN ₂ O ₄	140.9942	140.9950	-5.6	5.5
1.1	TP3	$C_4H_3N_2O_5$	159.0047	159.0047	0.0	4.5
1.3	TP4	$C_4H_3N_2O_5$	159.0047	159.0048	-0.2	4.5
1.5	TP5*	$C_4H_3N_2O_3$	127.0149	127.0152	-2.3	4.5
t _R (min)	Code name	Pseudo-molecular ion formula	Theoretical m/z [m+H] ⁻	Experimental m/z [m+H] ⁻	Δ (ppm)	RDBE
2.0	5-FU*	$C_4H_4FN_2O_2$	131.0251	131.0254	-1.8	3.5
1.0	TP6	$C_4H_7N_2O_5$ $C_4H_5N_2$	163.0350 1 45.0244	163.0352 145.02 49	-1.3 -3.8	2.5 3.5
1.5	TP 5*	$C_4H_5N_2O_3$	129.0 2 95	129.0296	-0.9	3.5
2.1	TP7	$C_4H_4FN_2O_3$	147.0201	145.0 198	1.7	3 .5

A Koltsakidou et al. / Science of the Total Environment 578 (2017) 257–267

5-Flouorouracil Transformation pathways..... mass

A Koltsakidou et al. / Science of the Total Environment 578 (2017) 257–267

 \checkmark tR of identified TPs (tR ± 0.05 min)

✓ MS² fragments

Database used for metabolites / TPs of pharmaceuticals

A broad investigation on the presence of TPs/metabolites of pharmaceuticals in effluent wastewaters from Greece using LTQ-Orbitrap- MS.

Application to real wastewater samples from Greece

Location: 8 WWTPs in Greece, 7 Municipal, I Hospital

Samples: 24-h composite samples Influents and effluents

Period : I year, 3 consecutive days/month

Ch. Kosma, D. Lambropoulou, T. Albanis, Science of The Total Environment, Vol. 466–467, 1 2014, 421-438

Ch. Kosma, D. Lambropoulou, T. Albanis, *Water Research*, *Volume 70, 1 March 2015, Pages 436-448*

Ch. Kosma, D. Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

Experimental procedure

Application to real wastewater samples from Greece

Orbitrap

- ✓ Samples analyzed in positive (PI) and negative (NI) ionization mode
- ✓ Gradient program

28 transformation products were detected

TPs of Antibiotics

TPs of Analgestics/antiinflama tory drugs 1-Hydroxy ibuprofen 2-Hydroxy ibuprofen 4-Hydroxy-diclofenac 5-Hydroxy-diclofenac Hydroxy-ketoprofen N-desmethyl-tramadol **O-desmethyl-tramadol**

Anhydro-erythromycin Desmethyl-clarithromycin Metabolite N-acetyl sulfamethoxazole N-acetyl ciprofloxacin (2 TPs of Trimethoprim - 2,4-diaminopyrimidin-5-yl)(3,4,5-trimethoxyphenyl)methanone) /2,4diaminopyrimidine-5-carbaldehyde)

TPs of Antidepressants /psychiatrics O-Desmethyl venlafaxine N-Desmethyl venlafaxine

10-hydroxycarbazepine

TPs of Antidiabetics Guanylurea

TPs of βblockers

Hydroxy propranolol

7 TPs of Omeprazole 4 Human Metabolites of Omeprazole

Application to real wastewater samples from Greece

The case study of Metformin

Metformin

Gunylurea

In some countries metformin **is in the top twenty list** of prescribed, produced and environmentally loaded pharmaceutically active compounds It was reported that concentrations of metformin and guanylurea together, account for more than half of the total load of pharmaceuticals in surface waters.

Metformin/Guanylurea in real wastewater samples from GreeceTWIN

Concentration levels of metformin and guanylurea in (A) the influents and (B) the effluents of WWTPs, worldwide

Metformin/Guanylurea in real wastewater samples from Greece

Chromatogram, (2) full scan accurate mass product ion spectrum and (3) MS/MS data obtained using Orbitrap MS targeting the corresponding ions, for (a) metformin and (b) guanylurea, espectively, found in the influent of Ioannina hospital WWTP in winter.

Metformin/Guanylurea in real wastewater samples from Greecetwin

Seasonal occurrence of (A) metformin in the influents and (B) guanylurea in the effluents

Ch. Kosma, D.Lambropoulou, T. Albanis, Water Research, Volume 70, 1 March 2015, Pages 436-448

Metformin/Guanylurea in real wastewater samples from GreecetWIN

Seasonal removal efficiency (%) of metformin and (B) Seasonal formation (%) of guanylurea

Application to real wastewater samples from Greece

Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, Vol. 466–467, 1 2014, 421-438

Transformation products (TPs) of Trimethoprim in WWTPs

Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590-591, 2017, 592-601

mass Omeprazole/ Metabolites/TPs in real wastewater samples from Greece

⁵¹Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

mass Omeprazole/ Metabolites/TPs in real wastewater samples from **Greece**

Proposed photolysis transformation pathways of omeprazole in natural waters

⁵²Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

Omeprazole/ Metabolites/TPs in real wastewater samples from Greece

Extracted ion chromatogram (XIC) of omeprazole and its TPs (P1, P2, P3, P4, P5, P6 and P7) obtained after photolysis under natural irradiation, in distilled water

⁵³Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

mass Omeprazole/ Metabolites/TPs in real wastewater samples from **Greece**

⁵⁴Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

D

(1) Full scan accurate mass product ion spectrum and (2) MS/MS data obtained ass using Orbitrap MS targeting the corresponding ions, for (a) omeprazole and its TPs

Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590-591, 2017, 592-601

(1) Full scan accurate mass product ion spectrum and (2) MS/MS data obtained ass using Orbitrap MS targeting the corresponding ions, for (a) omeprazole and its TPs

⁵⁶Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

mass Omeprazole/ Human Metabolites in real wastewater samples from Greece

			Mass			
Comp ound	RT (min)	Elemental composition	Experimental	Theoritical	RDB	Error (ppm)
ΜΙ	17.40	$C_{17}H_{20}O_{3}N_{3}S^{+}$	346.12 12	346.1220	9.5	-2.179
		C ₁₇ H ₁₉ O ₃ N ₃ ⁺	313.1422	313.1421	10	-0.342
		$C_9H_{12}O_2N S^+$	198.0581	198.0583	4.5	-1.140
		C ₈ H ₉ ON ₂	149.0704	149.0709	5.5	-0.539
M2	12.01	$C_{17}H_{18}O_4N_3S^+$	360.1003	360.1013	10.5	-2.467
		$C_9H_{10}O_3NS^+$	212.0370	212.0376	5 .5	-2.784
		$C_9H_{10}O_3N^+$	180.0651	180.0655	5.5	-2.331
M3	11.36	$C_{16}H_{18}O_2N_3S^+$	316.1101	316.1114	9.5	-4.189
		C ₁₆ H ₁₇ O ₂ N ₃ ⁺ •	283.1308	283.1315	10.0	-2.572
		C ₈ H ₁₀ ON S ⁺	168.0483	168.0478	4.5	3.206
		C ₈ H ₉ ON ₂ ⁺	149.0704	149.0709	5.5	-3.619
M4	9.03	$C_{16}H_{18}O_2N_3S^+$	316.1102	3 6. 14	9.5	-3.872
		$C_{16}H_{17}O_2N_3^+$ •	283.1326	283.1315	10. 0	3.785
		$C_9H_{12}ON S^+$	182.0631	182.0634	4.5	-1.710

⁵⁷Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

(1) Full scan accurate mass product ion spectrum and (2) MS/MS data obtained using Orbitrap MS targeting the corresponding ions, for the metabolites

Omeprazole/ Metabolites/TPs in real wastewater samples from Greece

Fig. 4. A: Positive findings (%); B: Concentration ranges (ng/L) and C: Seasonal variation of omeprazole found in the influents of the eight WWTPs.

⁵⁹Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

Omeprazole/ Metabolites/TPs in real wastewater samples from Greece

Positive findings of omeprazole metabolites in the (A) influents and (B) effluents of the eight WWTPs

⁶⁰Ch. Kosma, D.Lambropoulou, T. Albanis, Science of The Total Environment, 590–591, 2017, 592-601

28 transformation products were detected WIN

TPs of Antibiotics

TPs of Analgestics/antiinflama tory drugs 1-Hydroxy ibuprofen 2-Hydroxy ibuprofen 4-Hydroxy-diclofenac 5-Hydroxy-diclofenac Hydroxy-ketoprofen N-desmethyl-tramado O-desmethyl-tramadol

Anhydro-erythromycin Desmethyl-clarithromycin Metabolite N-acetyl sulfamethoxazole N-acetyl ciprofloxacin (2 TP of Trimethoprim - 2,4-diaminopyrimidin-5-yl)(3,4,5-trimethoxyphenyl)methanone) /2,4-diaminopyrimidine-5-carbaldehyde)

TPs of Antidepressants /psychiatrics O-Desmethyl venlafaxine N-Desmethyl venlafaxine 10-hydroxycarbazepine

7 TPs of Omeprazole 4 Human Metabolites of Omeprazole

TPs of

Antidiabetics

Guanylurea

TPs of β-

blockers

Hydroxy

propranolol

Inhibition of *Vibrio fischeri* bioluminescence as a function of photocatalytic treatment of TRA, and VNF

M Antonopoulou et al. / Science of the Total Environment 545–546 (2016) 476–485

D

D. Lambropoulou et al. / Journal of Hazardous Materials, February 2017, Pages 513-526

Inhibition of *Vibrio fischeri* bioluminescence as a function of photocatalytic treatment of TRA, N-DES-TRA, N,N-Bi-DES-TRA, N-OX-TRA

M Antonopoulou et al. / Science of the Total Environment 545–546 (2016) 476–485

D

Application to real wastewater samples from Greece

Location: 4 WWTPs in Greece, 4 Municipal Samples: 24-h composite samples Influents and effluents

mass

Period : 2 year, 3 consecutive days/month

Databases used for metabolites / TPs of pharmaceuticals

Transformation Products LSM, Literature

Human Metabolites Literature

High Resolution Mass Spectral Libraries for MS/MS data (MassBank, MetFrag, MZmine etc)

High Quality Mass Spectral Library

In silico fragmentation for computer assisted identification of metabolite mass spectra

Open-source software for massspectrometry data processing

The use of Databases

Open-source software for massspectrometry data processing

fluticasone 17beta-carboxylic acid, Rt: 13,05

G:\Orbi\20170117\NU_S_1^^

4/2/2017 3:42:57 µµ

m/z

14-hydroxyclarithromycin, Rt: 10,88

F: FTMS + c ESI Full ms [100,00-1000,00]

Quanylurea, Rt: 0,81

7/12/2016 6:51:49 µµ

Target screening

Data from **>500** parent Compounds

HRMS Multiresidue Method

Timo	H2O +	MeOH +	µl/min	
Ime	0.1% f.a. (%)	0.1% f.a (%)		
0.00	90	10	500	
1.50	90	10	500	
4.00	40	60	500	
8.00	30	70	500	
11.00	0	100	500	
12.00	0	100	500	
12.01	90	10	500	
15.00	90	10	500	

Application to real wastewater samples from Greece

Monitoring in 2 WWTPs

Thessaloniki (Greece)

WWTP-Sindos located in the west part of Thessaloniki, serves 363.987 citizens WWTP-Aineia located in the southeast coastal part of Thessaloniki, serves 50.264 citizens

✓ Rivers✓ Lakes✓ Canals

Monitoring for Pesticides/PPCPs/P FCs/OPFRs

Pesticides

PPCPs

PPCPs

37 different therapeutic classes and TPs

- 1. Anesthetic
- 2. Amine ergot alcaloids
- 3. Antibiotics
- 4. Antidiabetics
- 5. Antidiarrheal
- 6. Antiepileptic
- 7. Antifungal
- 8. Antineoplastic
- 9. Antiplatelet agent
- 10. Anti-vertigo agent
- 11. Antiviral
- 12. Anti-angina agents
- 13. Anti-inflammatoryanalgesics
- 14. Antiparkinsonian agent
- **15.** Antiseptics

- 16. Antioxidants
- 17. Beta-blockers
- 18. Beta-agonists
- 19. Brominated flame reductant 35. Steroid hormones
- **20.** Calcium channel blocker
- 21. Diuretic
- 22. Thyroid Hormones
- 23. Inotropic agent
- 24. Insect repellent
- 25. Antihistamines
- 26. Antihypertensive agent
- 27. Laxative drug
- 28. Lipid regulators
- 29. Muscarinic antagonist
- **30. Mucolytic agent**
- **31. Proton pump inhibitors**

- 32. Proton pump V inhibitor
- **33.** Psychomotor stimulant
- 34. Psychiatric drugs
- ant 35. Steroid normones
 - **36. UVA/UVB absorbers**
 - **37.** *α*¹ receptor antagonist

4/2/2017 9:32:33 µµ RT: 0,07 - 14,38 NL: 6,90E5 m/z= 150-763,9762-764,9762 F: FTMS + c ESI 10,88 Full ms 100-[100,00-1000,00] MS NU_S_103 50-13,51 0,68 5,56 5,94 6,44 6,98 7,58 8,18 8,84 9,76 9,88 10,59 11,20 11,83 12,55 13,19 13,75 0,75 2,94 3,29 4,02 4,23 0-10 12 13 5 8 9 11 14 4 6 Time (min)

NU_S_103 #825 RT: 10,88 AV: 1 NL: 6,80E5 F: FTMS + c ESI Full ms [100,00-1000,00]

C:\Users\...\Orbi\20170117

Salicylic acid, Rt: 9.61

1-OH Ibuprofen, Rt: 1.91

.

Clofibric acid, Rt: 12.6

D

15/12/2016 4:39:52 πμ

HRMS Multiresidue Method

Target + Suspect Screening

A home-made database >350 compounds

Data from >500 parent Compounds

>850 Compound Screening

To conclude

The application of rapid screening methods for the identification and detection of unknown ECs by LC–HRMS is still under development

Suspect screening is a promising tool for the tentative detection of emerging contaminants for which pure standards are not available, such as transformation products

Open source and commercial software such as Mass Frontier and Mass Fragmenter are available to predict mass spectral fragments using different fragmentation rules, but they need a lot of improvement.

From recent published data it is evident that the presence of TPs in the aquatic environment is not negligible and that TPs clearly contribute to the environmental and human health risk of Pharmaceuticals

A tentative method to prioritize TPs is very important, especially due to the large number of TPs that may form through various environmental transformation processes

conclusions....

Research in the field of ECs & TPs is ongoing

&

a great progress is anticipated in the near future!!

Acknowledgments....

Unit of high resolution The analysis-**ORBITRAP-LC-MS of the Aristotle University** of Thessaloniki for providing access to the facilities

Thank you for your attention!

The Center of Interdisciplinary Research and **Innovation** of Aristotle University of Thessaloniki (CIRI-AUTH), Greece, for access to the Large Research Infrastructure and Instrumentation of the Liquid **Chromatography and Mass Spectrometry** Laboratory at the Center for Research of the Structure of Matter in the **Chemical Engineering Department**

Advanced Microextraction Approaches Based on Novel nano- Polymers to Measure Pharmaceuticals, Personal Care Products (PPCPs) and their Transformation Products (TPs) in the Aquatic Environment

Ευρωπαϊκή Ένωση

ΑΚΟ ΠΡΟΓΡΑΜΜΑ

ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

dlambro@chem.auth.gr

