How can we use compound-specific isotope data to model organic contaminants in catchments?

source: Fenner (2013)

Stefanie Lutz 3rd MASSTWIN Exploratory Workshop November 14th – 16th 2018 Helmholtz Centre for Environmental Research in Halle, Germany

HELMHOLTZ | ZENTRUM FÜR | UMWELTFORSCHUNG | UFZ

Organic pollution

source: André Künzelmann/UFZ

Widespread organic pollution in aquifers ("legacy contaminants", e.g., benzene, chloroethenes) and catchments ("micropollutants", e.g., pesticides)

Common issues:

- identify emission sources
- provide evidence and quantification of transformation
- identify transformation pathway

Key questions

Common issues:

- identify emission sources
- provide evidence and quantification of transformation
- transformation pathway

How to extract this information?

- compound-specific isotope analysis (CSIA)
- mathematical and hydrological isotope models

1.1) CSIA FOR ORGANIC POLLUTANTS

Dilution vs. degradation of organic contaminants

The Rayleigh equation

Advantages of CSIA: degradation

Evidence and quantification of degradation because

- degradation alters isotopic composition
- dilution has no impact
- physical processes (sorption, dispersion...): generally limited impact on isotopic composition

Advantages of CSIA: sources

Source fingerprinting: isotopic composition can depend on manufacturer or source of raw material

Lorax Striker Bladex Fieldstar Aatrex Herbicides		
Fertilizer (Skitmore, 1997)		
Michigan & Appalachian Formation Waters (Drimmie and Frape, 1996)	Product name	Active ingredient
Sewage Sludge (Skitmore, 1997)	Aatrex Nine-O Striker Fieldstar	Atrazine Clopyralid, flumetsulam, 2,4-D Clopyralid, flumetsutlam
Road Salts (Rosen, 1999)	Bladex Nine-T Lorox DF	Cyanazine Linuron
(Desaulniers et al., 1986) Lambton & Sarnia Regional Groundwaters		
Chlorinated Solvents TCA (van Warmerdam et al., 1995) TCE		
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 δ^{37} Cl % (SMOC)		HELMHOLTZ ZENTRUM FÜR UMWELTFORSCHUNG
source: Annable (2007)		UFZ

Advantages of CSIA: sources

Source apportionment: what is the contribution of each source to the sample mixture?

isotope mixing model:

contribution of source A

$$f_A = \frac{\delta^{13}C_S - \delta^{13}C_B}{\delta^{13}C_A - \delta^{13}C_B}$$

1.2) DUAL-ELEMENT ISOTOPE DATA

Source identification with 2D isotope data

 main source: coal combustion at low temperatures

Differentiation between transformation pathways with 2D isotope data

characteristic slopes ($\epsilon_{\rm H}/\epsilon_{\rm C}$) for different transformation pathways

2) FIELD CSIA DATA OF ORGANIC GROUNDWATER POLLUTANTS

Calculating degradation in the field

CSIA in the field: heterogeneous systems

CSIA in the field: heterogeneous systems

source: Kopinke (2005) ES&T

3) COMBINED SOURCE APPORTIONMENT AND DEGRADATION QUANTIFICATION

Mixing and degradation

CSIA applied either for degradation quantification or source apportionment

→ What if isotopic composition changes due to source mixing and degradation?

SISS model: approach

Mathematical model for two mixing sources and degradation via one reaction pathway

 \rightarrow the <u>Stable Isotope Sources and Sinks Model</u>

SISS model: mixing followed by degradation

- 1. calculate mixing line (green)
- 2. set up equation for degradation trajectory (red)
- 3. calculate intersection point
- 4. calculate source contributions and extent of degradation

traditional isotope mixing model: $f_A = \frac{\delta^{13}C_M - \delta^{13}C_B}{\delta^{13}C_A - \delta^{13}C_B}$

from Rayleigh equation:

$$B[\%] = (1 - f_{deg}) \cdot 100$$
$$= \left[1 - \left(\frac{\delta^{13}C_S + 1000}{\delta^{13}C_M + 1000}\right)^{1000/\varepsilon_C}\right] \cdot 100$$

SISS model: unequivocal source partitioning

• Relative source contributions defined by 2D-isotope signature

 \rightarrow It is possible to divide the 2D-isotope plot into areas of certain source contributions

SISS model: field application

degradation [%]

3.2ª-3.3b

7.1-7.3

4.0-6.9

20.1-82.8

9.7-15.6

15.7-26.2

^a conservative estimate (scenario 1)

W9F2

W13F2

W15F2

W18F2

W18F3

W18F4

^b maximum estimate

of source A

0.37

0.57

0.04

0.05

0.09

0.13

degradation [%]

3.6-3.8

8.1-8.4

4.6-13.5

n.d.

11.1-28.1

17.8-54.7

source A

0.36

0.54

0.02

n.d.

0.06

0.07

ε_{H} =-79‰ and ε_{C} =-3.6‰
(sulphate reducing)

 ε_{H} =-60‰ and ε_{C} =-1.9‰ (methanogenic)

<u>Lutz</u> (2014b)

4) ISOTOPE MODELLING FOR DIFFUSE ORGANIC POLLUTANTS

Modelling of CSIA data

- IF-RTMs (isotope fractionation reactive transport models) for groundwater systems
 - \rightarrow analyse isotope ratios in contaminant plumes
 - \rightarrow test performance of Rayleigh equation in open systems

source: Prommer (2009)

- Novelty: simulation for diffuse pollutants
 - \rightarrow include groundwater, unsaturated zone and surface runoff

Diffuse pollutants on catchment scale

- challenges:
 - extrapolating from lab to field conditions
 - low environmental concentrations
- → hydrological models help explore the use of CSIA for diffuse organic contaminants

4.1) VIRTUAL EXPERIMENTS FOR A HILLSLOPE

Example I: hillslope model

- Can CSIA be used in river monitoring to analyse diffuse pesticide pollution?
- → performance of "virtual experiments" with flow and solute transport model (HydroGeoSphere)

Hillslope model: results

concentrations

 decreasing concentrations with increasing depth and distance from the source

carbon isotope ratios

- isotope enrichment with growing distance from the emission source
- enrichment > analytical uncertainty

source: Lutz (2013)

HELMHOLTZ | ZENTRUM FÜR | UMWELTFORSCHUNG | UFZ

Hillslope model: results

underestimation by Rayleigh equation

 comparison to modelled concentrations of conservative solute

extreme rainfall event

- isotope ratios drop to the source values → emission via surface runoff
- use in source identification

Insights from the virtual experiments

- magnitude of enrichment >> analytical uncertainties → can be detected by CSIA
- CSIA can be used for detection of pesticide transport via surface runoff
- good accuracy of Rayleigh equation approach

How does this work in a real catchment with field data?

4.2) FIELD CSIA DATA FROM AN AGRICULTURAL CATCHMENT

Catchment-scale modelling of pesticide CSIA

What does **CSIA** tell us about pesticide transport and degradation?

concentration + carbon CSIA of S-metolachlor during a growing season

collaboration with G. Imfeld, O. Elsayed, M. Lefrancq, S. Payraudeau (University of Strasbourg)

32

_source: Lutz (2017)

Field CSIA data – catchment scale

Concentrations:

Highest outlet concentrations after extreme rainfall event in May

CSIA:

- evidence of degradation: 2.5% enrichment vs. 0.5‰ analytical uncertainty
- challenge of low environmental ٠ concentrations for CSIA
- degradation at catchment outlet via ٠ Rayleigh equation: 94.1%

Model results: concentrations and $\delta^{13}C$ of S-met

- calibrated against discharge, concentrations and CSIA in multiple runs (grey area)
- underestimation of peaks
- mobilisation of sorbed and thus non-degraded pesticide in the source zone following
- calibrated $\varepsilon_{\rm C}$ =-1.13‰ (best fit) and ε_{c} =-0.9±0.3‰ (mean)

ZENTRUM FÜR UMWELTFORSCHUNG UFZ

Model results: mass balance

Monitoring and modelling: feedbacks

benefits of modelling

- mass balance: extent of degradation, transport, retention
- calibration of enrichment factor
- testing of alternative model setups (no erosion, first-order kinetics everywhere etc.)

For you to take home

Field CSIA data

Evidence and quantification of degradation (Rayleigh) Source delineation for local pollution

Modelling

Low-cost complementary approach Mass-balance based quantification of degradation Simulation of scenarios and virtual experiments

\rightarrow Field CSIA data and modelling can inform each other

Outlook

Advances in analytical methods to allow for higher resolution in CSIA data of diffuse organic pollutants

Acknowledgements

CSI:ENVIRONMENT EU Marie Curie Initial Training Network (2010-2015)

Boris van Breukelen (TU Delft, the Netherlands)

Gwenaël Imfeld, Omniea Elsayed, Marie Lefrancq, Sylvain Payraudeau (University of Strasbourg, France)

Ype van der Velde (Vrije Universiteit Amsterdam, the Netherlands)

HELMHOLTZ | ZENTRUM FÜR | UMWELTFORSCHUNG | UFZ

References (I)

- Alvarez-Zaldívar, P., Payraudeau, S., Meite, F., Masbou, J., and Imfeld, G. (2018) Pesticide degradation and export losses at the catchment scale: Insights from compound-specific isotope analysis (CSIA), Water Research, 139, 198-207, https://doi.org/10.1016/j.watres.2018.03.061.
- Annable, W. K., Frape, S. K., Shouakar-Stash, O., Shanoff, T., Drimmie, R. J., and Harvey, F. E. (2007) 37CI, 15N, 13C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants, Applied Geochemistry, 22, 1530-1536, https://doi.org/10.1016/j.apgeochem.2007.03.049.
- Bosch, C., Andersson, A., Kruså, M., Bandh, C., Hovorková, I., Klánová, J., Knowles, T. D. J., Pancost, R. D., Evershed, R. P., and Gustafsson, Ö. (2015) Source Apportionment of Polycyclic Aromatic Hydrocarbons in Central European Soils with Compound-Specific Triple Isotopes (δ13C, Δ14C, and δ2H), Environmental Science & Technology, 49, 7657-7665, 10.1021/acs.est.5b01190.
- Braeckevelt, M., Fischer, A., and Kästner, M. (2012) Field applicability of Compound-Specific Isotope Analysis (CSIA) for characterization and quantification of in situ contaminant degradation in aquifers, Applied Microbiology and Biotechnology, 94, 1401-1421, 10.1007/s00253-012-4077-1.
- Burt, T. P. and Pinay, G. (2005) Linking hydrology and biogeochemistry in complex landscapes. Progress in Physical Geography, 29(3):297–316.
- Elsayed, O. F., Maillard, E., Vuilleumier, S., Nijenhuis, I., Richnow, H. H., and Imfeld, G. (2014) Using compound-specific isotope analysis to assess the degradation of chloroacetanilide herbicides in lab-scale wetlands, Chemosphere, 99, 89-95, https://doi.org/10.1016/j.chemosphere.2013.10.027
- Elsner, M. (2010) Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations, Journal of Environmental Monitoring, 12, 2005-2031, 10.1039/C0EM00277A.
- Lutz, S. R., Velde, Y. V. D., Elsayed, O. F., Imfeld, G., Lefrancq, M., Payraudeau, S., van Breukelen, B. M. (2017) Pesticide fate on catchment scale: conceptual modelling of stream CSIA data. Hydrol. Earth Syst. Sci., 21(10), 5243-5261. doi:10.5194/hess-21-5243-2017.

References (II)

- Lutz, S. R., Van Breukelen, B. M. (2014a) Combined Source Apportionment and Degradation Quantification of Organic Pollutants with CSIA: 1. Model Derivation. Environmental Science & Technology 48, (11), 6220-6228.
- Lutz, S. R., Van Breukelen, B. M. (2014b) Combined Source Apportionment and Degradation Quantification of Organic Pollutants with CSIA: 2. Model Validation and Application. Environmental Science & Technology 48, (11), 6229-6236.
- Lutz, S. R., van Meerveld, H. J., Waterloo, M. J., Broers, H. P., van Breukelen, B. M. (2013) A modelbased assessment of the potential use of compound-specific stable isotope analysis in river monitoring of diffuse pesticide pollution. Hydrol. Earth Syst. Sci., 17, 4505-4524, doi:10.5194/hess-17-4505-2013
- Penning, H., Sørensen, S.R., Meyer, A.H., Aamand, J., Elsner, M. (2010) C, N, and H Isotope Fractionation of the Herbicide Isoproturon Reflects Different Microbial Transformation Pathways, Environmental Science & Technology 44 (7), 2372-2378, DOI: 10.1021/es9031858
- Prommer, H., Anneser, B., Rolle, M., Einsiedl, F., and Griebler, C. (2009) Biogeochemical and Isotopic Gradients in a BTEX/PAH Contaminant Plume: Model-Based Interpretation of a High-Resolution Field Data Set, Environmental Science & Technology, 43, 8206-8212, 10.1021/es901142a.
- Van Breukelen, B. M. (2007) Quantifying the Degradation and Dilution Contribution to Natural Attenuation of Contaminants by Means of an Open System Rayleigh Equation, Environmental Science & Technology, 41, 4980-4985, 10.1021/es062846u.
- Van Keer, I., Bronders, J., Verhack, J., Schwarzbauer, J., Swennen, R. (2012) Limitations in the use of compound-specific stable isotope analysis to understand the behaviour of a complex BTEX groundwater contamination near Brussels (Belgium). Environ. Earth Sci., 66 (2), 457–470.