Biogeochemistry of Hg unraveled by its isotopic signatures

AMOUROUX David BERAIL Sylvain DONARD Olivier F.X. TESSIER Emmanuel

mass twin

Laboratoire de Chimie Analytique Bioinorganique et Environnement Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux IPREM UMR 5254 Hélioparc Pau (France)

CNIS

Mercury cycle and isotopic fractionation

Methyl-HgX Production Methylation MDF (-)

Methyl-HgX Degradation 1) Photo-demethylation MDF (+) & MIF (+)

- 2) Microbial demethylation MDF (+)
- 3) Dimethylation ?

Ultimate sink of Methyl-HgX: food web bioaccumulation: no MIF, MDF (?)

Halle Thursday 15 November 2018

MDF

- Chemical processes
- Physical processes
- Biological processes

MIF > Photo-reduction > Photo-demethylation > Biological processes

Mechanistic studies

2 Hg methylation pathways

Quantification of Hg species (Hg(II), CH_3Hg , (CH_3)₂Hg) by isotopic dilution

Measurement of of Hg species (Hg(II), CH_3Hg , (CH_3)₂Hg) specific stable isotopic composition

Isotopic fractionation of Hg species during abiotic methylation

δ²⁰²Hg

3.0

2.0

δ²⁰⁰Hg 2.0

Isotopic fractionation of Hg species during biotic methylation

- MeHg > 85% total Hg in fishes
- MeHg from 20 to 50% in plankton
- [MeHg] increase with TL

Hg speciation at various fishes trophic level:

- → MeHg bioaccumulation and biomagnification within food webs of both areas
- → highly Hg contaminated fishes in Bratsk reservoir

(5 to 20 times more concentrated than Lake Baikal)

WHAT ABOUT ISOTOPIC COMPOSITION ?

LAKE BAIKAL

 \rightarrow increasing δ^{202} Hg due to Hg bioaccumulation and/or trophic transfer

Hg stable isotopes in nature

Variations of Hg isotopic composition in the environment

→ Isotopic signature of Hg in environmental samples helpful to identify the source of Hg contamination (ex. Foucher et al. (2009) in sediments, Perrot et a (2010) in fishes, ...)

• Several biogeochemical reactions involving Hg in nature produce isotopic fractionation of Hg

reduction	 microbial photoreduction abiotic 	Kritee et al., 2008) Zheng et al., 2009; Bergquist and Blum, 2007) Zheng and Hintelmann, 2010)			
demethyla	ation → microbial → photodemethylation (Berg	(Kritee et al., 2009) ۱ (Bergquist and Blum, 2007; Malinovsky et al., 2010)			
methylatio	on microbial abiotic	(Rodriguez-Gonzalez et al., 2009) (Malinovsky and Vanhaecke, 2011)			
	Modification of Hg source isotopic signature				
	≠ pathways of reaction	fractionation processes and extent			
	Are Hg species (Hg(II), CH ₃ Hg) fractionation dependent both on methylation/demethylation kinetics and environmental conditions?				

Assessing historical Hg contamination of main

German rivers using Hg isotopes

The Water Framework Directive (WFD) 2000/60/EC requires that EU countries achieve good chemical status of waters within regulated limits

Directive 2013/39/EU on environmental quality standards (EQS) specifies that

the mercury (Hg) level of fish is below the EQS of 20 µg/kg wet weight (ww)

Protection goal:

secondary poisoning of predators

- For the German ESB, ecologically representative environmental and human specimens are collected, analyzed for environmentally relevant substances and stored
- Long-term storage is performed under conditions which exclude any change in composition or chemical properties over a period of several decades
- The ESB archive retains specimens for retrospective analytical characterization concerning unpredictable questions which may arise in future

Sediments as a source

Umwelt 📦 Bundesamt

Elbe and Elbe tributaries, MIF

• Δ^{199} Hg and Δ^{201} Hg values close to 0. Slope of 1.39 but r²=0.51 (forced through 0)

incorporation of MeHg photodemethylated into the water column (small extent).

Umwelt 📦 Bundesamt

MIF issues

Umwelt 🎲 Bundesamt

- R4: odd isotope enrichment (up to + 0.7%), larger than all other. Restricted range of isotope fractionation ($\approx 0.25\%$), no clear temporal trend
- D3 : no trend
- LB : Largest range (0.3‰) and contrasted trend

Comple	Date of	[Hg]	Volume	δ202Hg	Δ200Hg	Δ199Hg
Sample	sampling	(ng/L)	(ml)*	(‰)	(‰)	(‰)
UBA 1B	05/01/2016	3.8	912	-0.68	0.10	-0.18
UBA 4A	26/01/2016	3.5	851	-0.72	-0.05	-0.08
UBA 6A	09/02/2016	5.2	805	-0.61	0.04	-0.23
UBA 12B	22/03/2016	3.7	498	-0.35	0.12	0.28
UBA 13A	29/03/2016	4.7	633	-0.28	0.22	0.00
UBA 17A	26/04/2016	5.5	512	-0.47	0.17	-0.52

* collected on 1 week duration for each

Significant \neq MIF : different origin of Hg ?

Fig. 4 Even-MIF in precipitation samples collected from the North America and China (modified from Wang et al. 2015) [24, 36–39, 41, 42]. The Wisconsin rain samples collected in summer are similar to those samples in Peterborough of the same season. The fact that Δ^{200} Hg displays a general increase with latitude implies an upper atmosphere provenance of even-MIF

Cai et al. Review on even MIF : Science Bull. 2016

GC vs CVG / MC-ICP-MS

 Δ^{199} Hg

 Δ^{200} Hg

GC / MC-ICP-MS

CVG /MC-ICP-MS

Biogeochemistry of Hg unraveled by its isotopic signatures