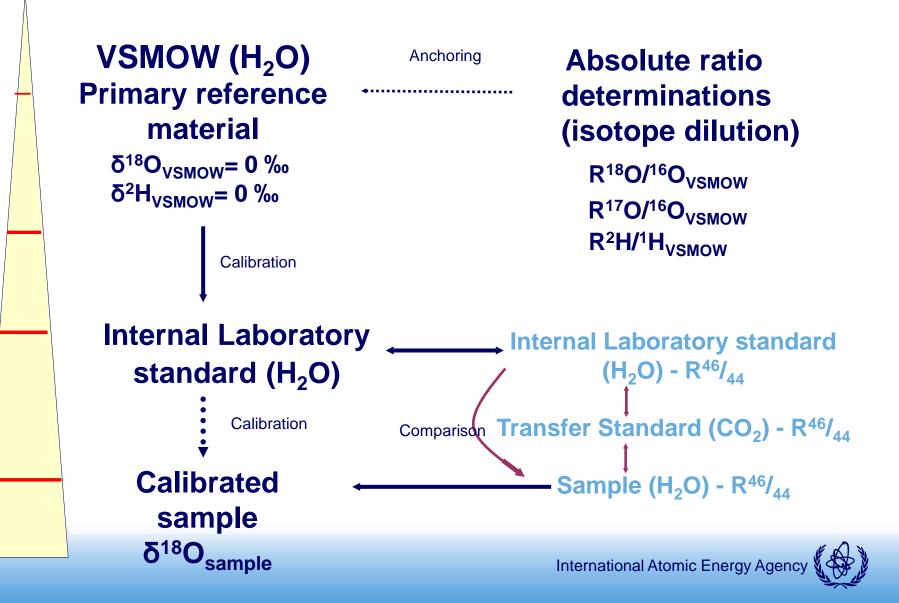


International Atomic Energy Agency


Basic concepts and the Use of Reference Materials in Stable Isotope Metrology

Manfred Gröning

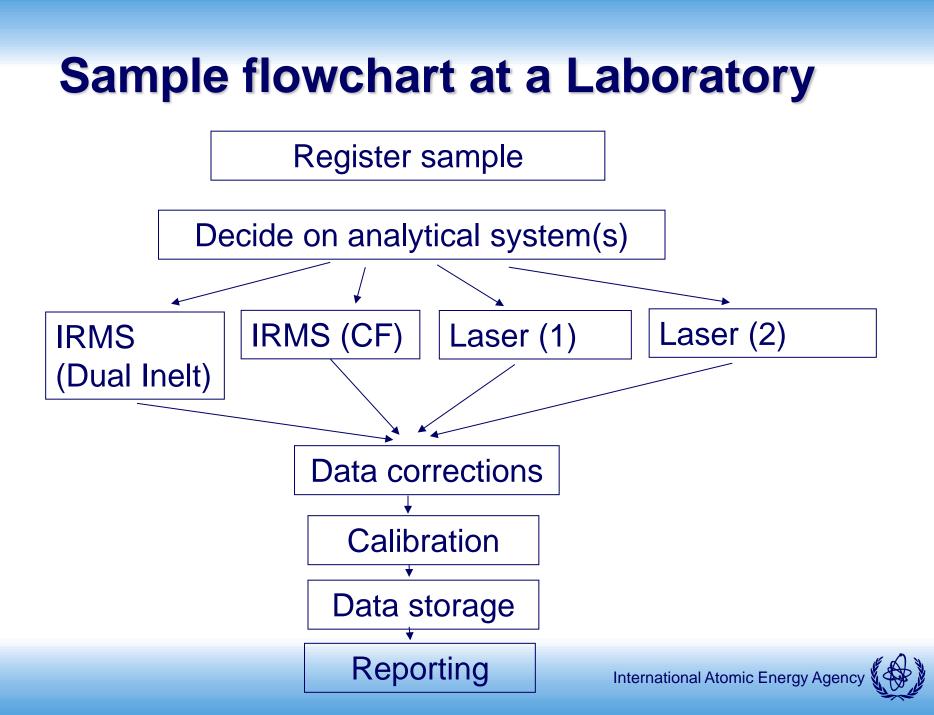
Terrestrial Environment Laboratory, IAEA

MASSTWIN Training course on Metrology, Ljubljana, 7-9 Dec 2016

Traceability & Uncertainty pyramid

The problem in short

Basic Concepts


After installation and acceptance testing of a new MS:

1. Decide on internal laboratory standards (ILS), obtain and measure them to ensure long term performance

2. Calibrate the ILS samples versus suitable reference materials (RMs) and monitor data (QC, ILS)

3. Establish routine reporting

1. Internal Laboratory Standards (ILS)

- International measurement standards VSMOW2, SLAP2
- Internal laboratory standards (ILS)
- -Unknown samples

Why intermediate step ILS necessary?

- •VSMOW2 and SLAP2 small quantities. Do not use them for everyday calibrations!
- Need for an inexpensive set of internal standards that are calibrated versus VSMOW2 and SLAP2.
- •The internal standards are the entire basis for the accuracy of your results!!!

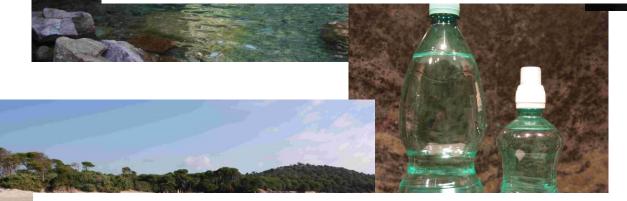
 \Rightarrow They are as important as the instrument!

Internal Laboratory Standards (ILS)

- Use in daily calibrations of routine measurements
- Several ILS standards required (at least 3), to be stored in suitable condition in sufficient amounts for at least a decade of lab operation
- Cover full isotopic range of routine samples, should have similar chemical properties
- Calibration of ILS is of utmost importance as it defines possible accuracy of any measurement; regular recalibrations recommended

Internal (in house) laboratory standards

- Where do I get internal standards?
- Not many suppliers, only sold in small quantities, and they are expensive.
- The best way is to make your own!
- This is what all the good isotope laboratories do, and it is not difficult.
- Following example for water generally applicable for all other applications ...



Possibilities

What do these pictures of water have in common ?

...all could be your valuable future internal lab standards ...

Making internal lab standards

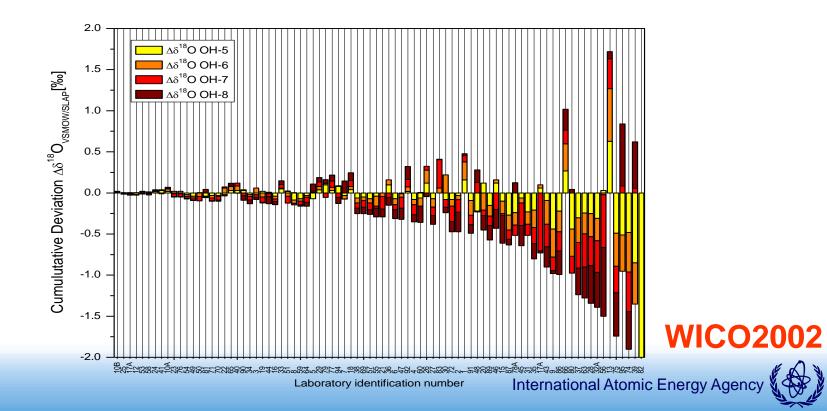
- You want at least 3 ILS standards
- Two as calibration standards (a "heavy" standard and a "light" standard bracketing the range of typical sample values)
- One quality control standard (QC) (QC isotopically intermediate)
- Try to conserve them (filtrate, distill/sterilize ...)
- Additional standards useful (e.g. a very heavy standard for highly evaporated samples). A "library" of standards is nice, but not always essential.

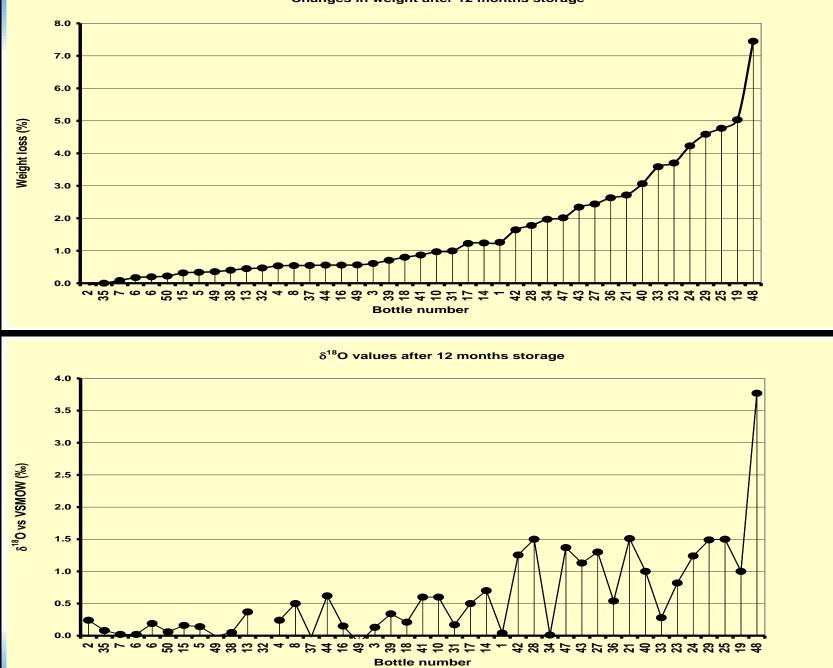
Internal laboratory standards - II

Main problem: Calibration of standards

- Ensure accuracy of produced data, quantify precision
- careful and proper calibration of the isotopic composition
- Result:

 $\delta^{18}O(std11) = 0.07 \pm 0.03 \% vs.VSMOW/SLAP$


• Question: how to quantify uncertainty?


Internal laboratory standards - III

Second major problem: Storage of standards

- Avoid any evaporation or fractionation during storage
- Remember: you will not be able to recognize it easily!

Changes in weight after 12 months storage

Internal laboratory standards IV


Storage containers:

- Metal barrels under gas overpressure preferred choice
- Glass flasks and bottles: large/medium/small
- (See IAEA-IHL TPN43 report)

Water distillation

Photo of a standard laboratory distillation system being used for preparation of an internal standard.

Preparation of water standards using the "solid water" method

- For analysis of materials different from water for H and O isotopes, calibration of solid ILS may be complicated. Without suitable RMs calibration has to be done versus VSMOW2 water.
- The major problem is the evaporation of water during sample preparation before analysis.
- A new method was developed to avoid this problem.
- Suitable amounts of water is sealed in silver capillaries, which can be used together with solid samples in an autosampler.
- See Qi et al. 2009

Considerations for solid ILS materials

- For routine analysis of other materials (organics, inorganics like carbonates), internal laboratory standards are needed as well.
- Similar considerations apply:
- Carbonates: care for isotopic exchange, dry storage
- Organic materials: long term stability, side effects (caffeine - N), isotopic compositions
- Calibration of these solid standards has to be performed against suitable reference materials
- Identical Treatment principle if possible

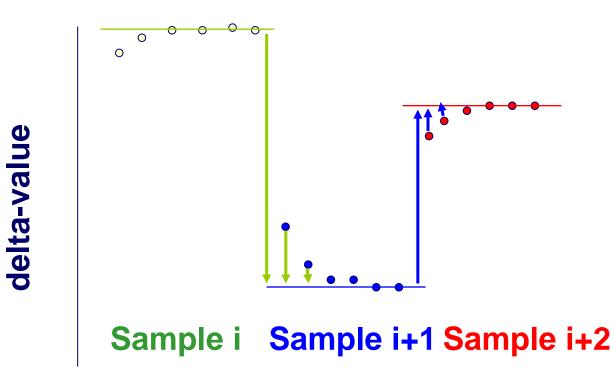
2. The Calibration process

- Perform calibration of ILS versus VSMOW2 and SLAP2 only under the best instrumental conditions
- VSMOW2 and SLAP2 are precious, don't waste them!
- Perform enough measurements to derive statistically well founded results
- Repeat on several days
- Calibration Excel template available (CalibTemplate.xls)
- Have other good isotope laboratories analyze your internal standards as an independent check

Calibration of measurement data

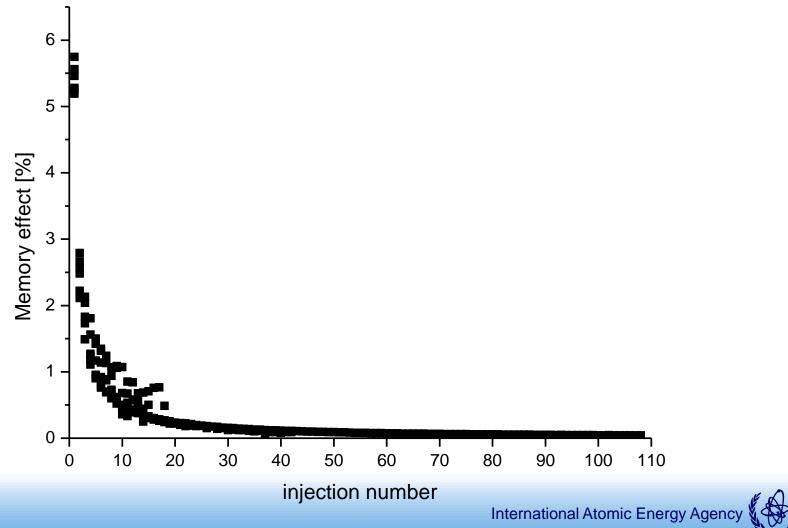
- Calibration of measurements is key to ensure comparability of data between laboratories
- a) Raw data as measured by instrument
- b) External influences and corrections temperature fluctuations, variations in used amounts, background
- c) Memory effect correction
- d) Drift of isotope data with time and correction
- e) Actual calibration using ILS and
- f) Uncertainty evaluation

2.a Raw data

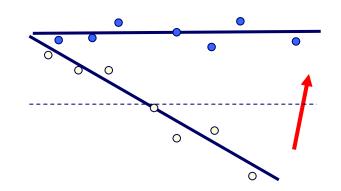

- Raw data as provided by instrument (see Gonfiantini 1981 IAEA TRS No.210; Allison 1995, IAEA TECDOC-825)
 point of view of a modern user of today
- Correction and calibration of data is handled differently by each instrument provider, consistency can be improved by using a common calibration mechanism:
- SICalib Provided free of charge by IAEA
 <u>https://nucleus.iaea.org/rpst/referenceproducts/Analytic</u>

 <u>al_Methods/Stable_Isotope_Reference_Laboratory/index</u>
- LIMS provided free of charge by T. Coplen at USGS
 http://water.usgs.gov/software/LIMS/

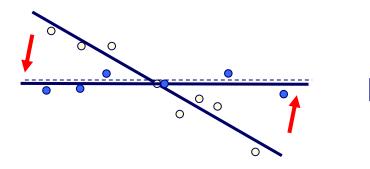
2.c Memory correction



Injection no., time \longrightarrow



Instrument Memory for Laser (in % of isotopic difference)


Memory for $\delta^2 H$ measurements

2.d Drift correction

Drift corrected mean Incorrect !!! Mean

Mear& Weighted

For further details of the drift correction and used formula see Manual of SICalib

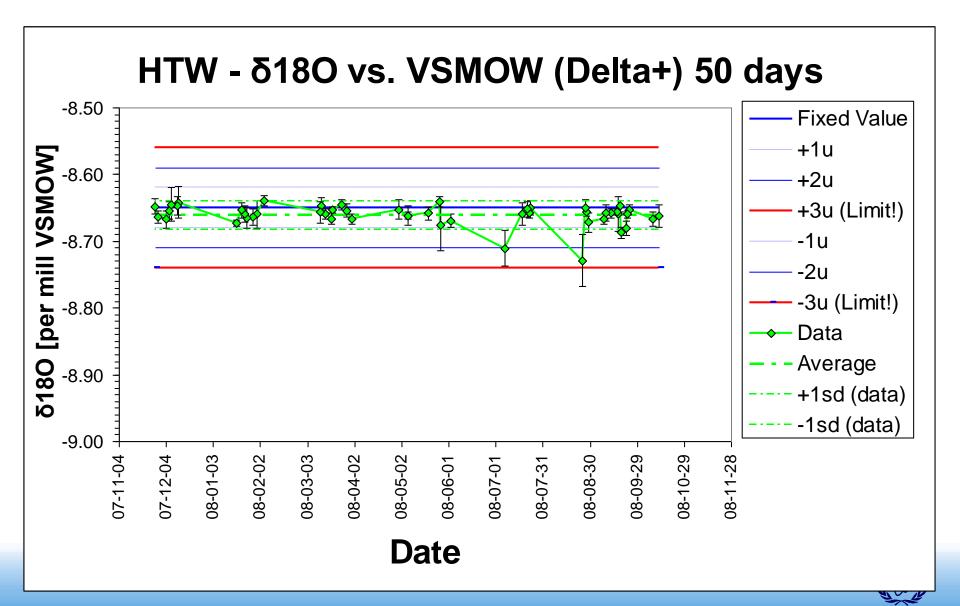
2.e Calibration

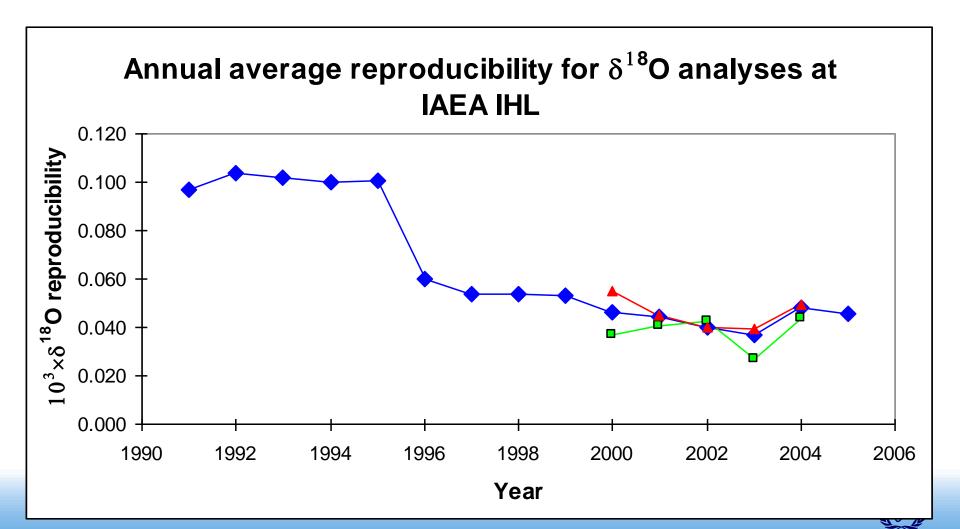
Basic equation for 2-point calibration:

 $\delta^{2} \mathbf{H}_{\text{sample}} = \delta^{2} \mathbf{H}_{\text{cal1}} + \left(\delta_{W}^{2} \mathbf{H}_{\text{sample}} - \delta_{W}^{2} \mathbf{H}_{\text{cal1}}\right) \cdot \left(\delta^{2} \mathbf{H}_{\text{cal2}} - \delta^{2} \mathbf{H}_{\text{cal1}}\right) / \left(\delta_{W}^{2} \mathbf{H}_{\text{cal2}} - \delta_{W}^{2} \mathbf{H}_{\text{cal1}}\right)$

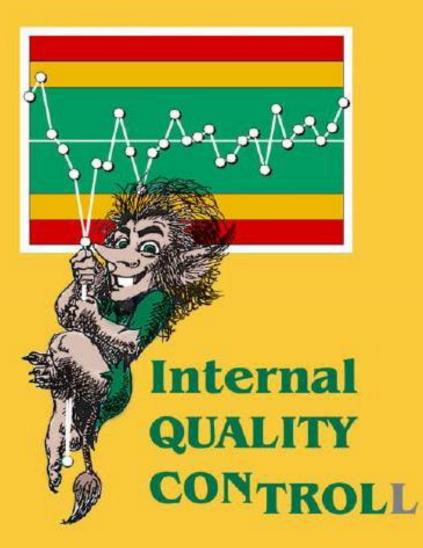
with cal1=VSMOW2, cal2=SLAP2, data indicated with W versus working standard, all other data calibrated on the VSMOW/SLAP scale.

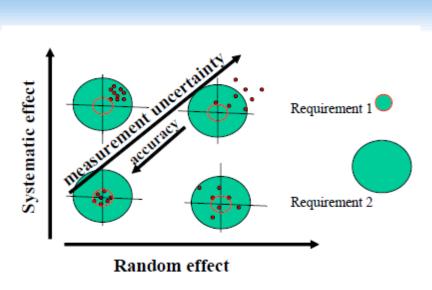
In first instance Internal Laboratory Standards have to be calibrated.

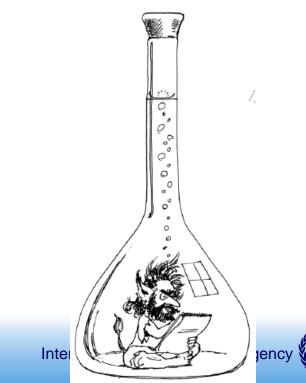

At IAEA a series of water standards is available:


(Calib Template.xls)

	VSMOW2	SLAP2	xx2	Std6	Std8	GISP/Std9	Std10	Std11			
Average	0.000	-55.500	#DIV/0!	-8.621	-11.291	-24.773	-50.824	0.078			
std.dev.	0.043	0.054	#DIV/0!	0.033	0.031	0.027	0.044	0.049			
no.	6	5	0	4	5	5	4	6			
Correction	factor for VS	SMOW-SLAF	scale =	0.979313		long-term la	ab reprodu c	cibility [%			
¹⁸ O values vs. WS in ‰ (drift corrected data!)											
	VSMOW2	SLAP2	xx2	Std6	Std8	GISP/Std9	Std10	Std11			
Average	15.307	-41.365	#DIV/0!	6.504	3.778	-9.990	-36.590	15.387			
std.dev.	0.028	0.036	#DIV/0!	0.016	0.013	0.009	0.023	0.011			
Max	15.34	-41.33	0.00	6.53	3.79	-9.98	-36.57	15.40			
Min	15.27	-41.41	0.00	6.49	3.76	-10.00	-36.62	15.37			
n	6	5	0	4	5	5	4	6			
1	15.34	-41.33		Z	3.79	-9.98	-36.62	15.3			
2	15.30	-41.40		6.50	3.78	-9.99	-36.60	15.3			
3	15.27	-41.34		6.49	3.76	-9.98	-36.57	15.3			
4	15.31	-41.35		6.53	3.79	-9.99	rejected	15.3			
5	15.34	rejected		6.51	3.77	-10.00	-36.58	15.3			
6	15.29	-41.41						15.4			
7								ency 🕻 🚭			


QC-charts


Long term reproducibility



NORDTEST REPORT TR 569

Handbook for Chemical Laboratories

2.f Uncertainty components

- Repeatability
- Reproducibility
- Memory
- Blanks
- Contamination effects
- Linearity and drift of measurement system
- Calibration of laboratory standards
- Measurement of international standards
- Bias by used procedures and equipment

Combined Uncertainty

$$\delta^2 \mathbf{H}_{\text{sample}} = \delta^2 \mathbf{H}_{\text{cal1}} + \left(\delta_{\text{W}}^2 \mathbf{H}_{\text{sample}} - \delta_{\text{W}}^2 \mathbf{H}_{\text{cal1}}\right) \cdot \left(\delta^2 \mathbf{H}_{\text{cal2}} - \delta^2 \mathbf{H}_{\text{cal1}}\right) / \left(\delta_{\text{W}}^2 \mathbf{H}_{\text{cal2}} - \delta_{\text{W}}^2 \mathbf{H}_{\text{cal1}}\right) = \delta_{\text{cal1}}^2 \cdot \left(\delta_{\text{W}}^2 \mathbf{H}_{\text{cal2}} - \delta_{\text{W}}^2 \mathbf{H}_{\text{cal2}}\right) = \delta_{\text{Cal2}}^2 \cdot \left(\delta_{\text{W}}^2 \mathbf{H}_{\text{cal2}} - \delta_{\text{W}}^2 \mathbf{H}_{\text{cal2}}\right) = \delta_{\text{Cal$$

Combined uncertainty for calibration formula:

$$u(\delta_{\text{sample}}) = \begin{cases} \left(\frac{\partial f}{\partial \delta_{\text{cal1}}}\right)^2 \cdot u(\delta_{\text{cal1}})^2 + \left(\frac{\partial f}{\partial \delta_{\text{cal2}}}\right)^2 \cdot u(\delta_{\text{cal2}})^2 + \left(\frac{\partial f}{\partial \delta_{w \text{ cal1}}}\right)^2 \cdot u(\delta_{w \text{ cal1}})^2 + \left(\frac{\partial f}{\partial \delta_{w \text{ cal2}}}\right)^2 \cdot u(\delta_{w \text{ cal2}})^2 + \left(\frac{\partial f}{\partial \delta_{w \text{ sample}}}\right)^2 \cdot u(\delta_{w \text{ sample}})^2 \end{cases}$$

Uncertainty components

Example for the third term only:

Variance from uncertainty (here standard error of the mean 'sem') of measured values of calibration standard cal1 at the measurement day:

$$\left(\frac{\partial f}{\partial \delta_{w \text{ call}}}\right)^2 \cdot u(\delta_{w \text{ call}})^2$$

Corresponding sensitivity factor:

$$\left(\frac{\partial f}{\partial \delta_{\text{w cal1}}}\right) = \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) \cdot \left(\delta_{\text{W sample}} - \delta_{\text{W cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{cal2}} - \delta_{\text{Cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{Cal2}} - \delta_{\text{Cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{Cal2}} - \delta_{\text{Cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{Cal2}} - \delta_{\text{Cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{Cal2}} - \delta_{\text{Cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{Cal2}} - \delta_{\text{Cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{W cal1}}\right)^2 - \left(\delta_{\text{Cal2}} - \delta_{\text{Cal1}}\right) / \left(\delta_{\text{W cal2}} - \delta_{\text{Cal1}}\right) / \left(\delta_{\text{W$$

International Atomic Energy Agency

Water stable isotope measurements and their associated uncertainty

Main uncertainty components for any measurement on water:

	δ ¹⁸ Ο	δ²Η
Sample measurement repeatability:	± 0.01 ‰	± 0.1 ‰
Sample measurement reproducibility:	± 0.048 ‰	± 0.76 ‰
Daily lab standard measurement:	± 0.03 ‰	± 0.6 ‰
Daily control sample measurement:	± 0.018 ‰	± 0.3 ‰
Linearity correction offset:	± 0.015 ‰	± 0.3 ‰
Measurement of internat. standards:	± 0.02 ‰	± 0.3 ‰
Uncertainty of internat. standards:	± 0.02 ‰	± 0.3 ‰
Combined standard uncertainty:	0.07 ‰	1.2 ‰
	International A	tomic Energy Agency 🐧

3. Implementation tool: SICalib

- Tool for calibration of stable isotope data (hydrogen and oxygen):
- SICalib.xls, an Excel spreadsheet based evaluation tool, developed at the IAEA to deal with calibration and uncertainty issues for the variety of methods for water δ2H and δ180 (Gröning 2011, RCM)
- Ideally the same algorithms should be used on all raw data produced by the analytical systems to compile, correct and calibrate
- The same is true for calculation of combined uncertainties

Select the analytical system

🔣 Mi	icrosoft Excel -	SICalib.xls									_	. 8 ×
	<u>Eile E</u> dit <u>V</u> iew	Insert Format Tools [<u>D</u> ata <u>A</u> ssistants <u>W</u> ind	ow <u>H</u> elp Ado <u>b</u> e	PDF						_	. 8 ×
Aria	1	• 10 • B <i>I</i>	⊻ ≣ ≣ ≣	9€%,	1.08 ÷.08 🚛	ŧ 🗉 •	ð • <u>A</u> • .					
	🛩 🖬 🔒 é	5 🖪 🖤 👗 🖻 f	🖥 💅 🗠 • 🖂 •	🍓 Σ f* 🙀		🚯 130%	- 🤉 - 🔁	2				
	► 153 63	1 to the late 1 p			and the second sec		10 d 5-1-1-1		: ::::::::::::::::::::::::::::::::::::	⊨ ++	i	
	Target 💌	=					1.77					
	A	ВС	D E	F	G	Н		J	K	L	M	
1	SICalib Ve	ersion 2.10 Man	fred Gröning, 2	007-12-12						A		his
2				Calibration	n Data IHL (s				Measureme			ies
3	Selected	Calibration Proc	edure:	Name	delta2H	u(d2H)	delta18O	u(d18C	Instrument	delta2H	delta18O	
4				VSMOW	0	0	0	0	DELTA+	0.7	0.05	
5			linearDrift	SLAP	-428	0	-55.50	0	MAT250	0.7	not meas.	
6		Delta+: H&O	IsoDatNT					·,	GVI	2.0	0.25	
7				VSMOW2	0	0.3	0	0.02	LASER	1.5	0.25	
8		Delta+: H		GISP	-189.5	0.4	-24.78	0.04				
9				SLAP2	-427.5	0.3	-55.50	0.02				
10		Delta+: O	8						-			
11				Std6	-61.1	0.3		0.06				
12		Laser: H&O		Std7	-4.1	1.2	-0.07	0.03				
13				Std8	-78.4	1.0		0.04		1		
14		MAT250: H		Std9	-189.1	0.9	the second se	0.03				
15				Std10	-398.1	0.9		0.05				
16		IsoPrime: H		Std11	-1.4	1.9	110000000000000000000000000000000000000	0.05				
17				Std12	-86.9	1.0	-12.01	0.03		1		
18		IsoPrime: O) : 1 : : : : : : : : : : : : : : : : : :	-			· · · · · ·				
19			_	OH-1	-3.9		-0.05					
20				OH-2	-30.8		-3.28					
21				OH-3	-61.3		-8.65	()		() ()		
22	<u>}</u>			OH-4	-109.4		-15.28	·				
23				AU 7	4.7							-
	▶ ► SI_Calit	WAYA				· · · · ·						
Draw	w • 🗟 🙆 A	AutoShapes 🔹 🔨 🍾		🕭 - 🏒 - 🗛	• = = = :	🗋 🗃 🗸						
Read	dy							1			NUM	

Import the raw data file

Insert 2H-Rawdata from MS_IsoDatNT_ExcelFile ? × 🕝 + 🔟 | 🔍 🗙 💕 🧾 + Tools + Look in: DeltaNT PK 1 HDO 080325.xls 2007 HDO 060816r.xls 🌉 HDO - 080328.xls My Recent HDO 080116.xls 🛀 HDO 080331.xls Documents HDO 080118.xls 🌉 HDO 080421.xls HDO 080121.xls 🌉 HDO - 080430.xls HDO 080506.xls HDO 080123.xls HDO 080124.xls 🌉 HDO - 080519.xls Desktop HDO_080128.xls HDO 080526.xls HDO_080131.xls 🌉 HDO_080527.xls 🐏 HDO_080602_dea sea exp.xls HDO 080204.xls My Documents HDO 080311.xls 🌉 HDO 080707.xls HDO 080312.xls HDO 080718 IHAN Test.xls HDO 080314.xls HDO 080721 IHAN Test.xls HDO_080318.xls HDO 080825.xls My Computer HDO 080319.xls HDO 080827.xls Type: Microsoft Excel Worksheet File name: Open Size: 30.5 KB My Network Files of type: Places All Files (*.*) Cancel

Memory correction

🔀 Mic	rosoft Excel - fgh	080522-1.xls [R	ead-Only]							_ 8 ×
ः 🔨 🛽 <u>म</u>	ile <u>E</u> dit <u>V</u> iew	Insert F <u>o</u> rmat	<u>T</u> ools <u>D</u> ata <u>W</u> ir	ndow <u>H</u> elp Ado <u>l</u>	<u>b</u> e PDF			Туре	a question for help	×
		🕉 🔊 - (° -	21 🛍 150%	🔹 🍟 Arial	- 10	• B <i>I</i> <u>U</u>	📰 🚍 🗮 🕎 🕇	.0 .00 🖂 🗕 🆄	• 🔺 • 📲 🗄	🔁 🕰 🐔 💂
	U4 👻	fx			_					
	V	W	Х	Y	Z	AA	AB	AC	AD	AE <u>-</u>
1	-		nParame 🛨	rs 🗸	•	•	-	•	•	
2		LS1:	LS2:							
3		std7	std9	std6						Sampl
4		300.1	62.5	226.5						Mean:
5		0.9	1.8	1.5						Stddev
6		-4.1	-189.1	-61.1						
7		1.2	0.9	0.3						
8			1.283983							
9		\$AG\$43	\$AH\$43	\$AF\$43						
10		MemoryC	orrectionF	actor dete	DriftCorre	ctionPara	meters	Slope: line:		
11		0.05	used value	•	used:	-0.0128	0.0000	-0.0049	Update	
12						ConstSlop	Slope(_Slope)	Slope(_Into	DriftPara	
13		0.055833				-0.0128	0.0000	-0.0049		
14		0.017553				Samples_t	MaxNo.MultAna	TotalCount	TotalSum:	
15						77	32	392	77420	
16		x 3.363768	std6_std7		SampleNa	Slope	Intercept	Count	SumNo	
17		0.047	std7_std9		std6	-0.0133	229.09	32	6000	
18		0.042	std9_6647	6	std7	-0.0175	303.59	32	6128	
19		x .133039	66476_67	368	std9	-0.0077	63.68	32	6256	
20			67368_67		66476	no(<7)-1.0	288111574722:	4		
21			67375_67				4072263646958			
22			67564_67				6413855047722			
23			67655 66 / 180-Data / Pa		67564	no(<7) 1 (9002954401731	4		
lia a b	▶I \ImportedRa	waata _A 2H-Data	i ja 180-Data ja Pai	rameter <u>(</u> Help /			• • • • • • • • • • • • • • • • • • •			

Drift correction

🔀 Micr	osoft Excel - F20	008_05_19.xls [F	Read-Only]								Ð×
			<u>T</u> ools <u>D</u> ata <u>W</u> ir						Type a question		₽×
			⋛↓ 🛄 150%	🔹 🦉 Arial	▼ 10	• B <i>I</i> <u>U</u>		00. 0.+ 🕎	🛛 • <mark> ></mark> • <u>A</u> •	े 🗒 🔁 🛃	₹3 🖕
X	14 👻	fx .			_					. –	
	V	W	Х	Y	Z	AA	AB	AC	AD	AE	_
1			nParamete	ers							
2		LS1:	LS2:								1
3		7	9	6						Sample:	
4		14.14	-11.10							Mean:	
5		0.04	0.01	0.01						Stddev:	
6		-0.07	-24.77	-8.70							
7		0.03	0.03	0.06							
8			1.022051								
9		\$AF\$15	\$AG\$15	\$AH\$15							
10					DriftCorre	ctionPara	meters	Slope: line	arDrift		
11					used:	-0.0015	-0.0001	-0.0011	Update		
12						ConstSlop	Slope(_Slo	Slope(_Int	DriftPara		
13						-0.0015	-0.0001	-0.0011		ſ	ı
14						Samples_t	MaxNo.Mu	TotalCount	TotalSum:	Sample:	
15						38	4	47	3428	Mean:	
16					SampleNa	Slope	Intercept	Count	SumNo	Stddev:	
17					7	-0.0031	14.37	4	274		
18					9	-0.0002	-11.09	4	285		
19					6	-0.0012	5.45	4	298		
20											
21											
22											
23	N. Taxa autor - Die	uudaka (OLL Data	100 Data / 20	unanakan dilah d			41				
li	▶ _ ImportedRa	waata <u>K</u> 2H-Data	∖180-Data ∕ Par	rameter <u>(Heip</u> /			•				ЪГ

2-Std Calibration & uncertainty eval

Eile Edit Viev	v <u>I</u> nsert F <u>o</u> rm	iat <u>T</u> ools <u>D</u>	ata <u>A</u> ssista	nts <u>W</u> indow <u>H</u>	elp Ado <u>b</u> e i	PDF					
Arial	• 10 •	BI	ī∣≣≣		€%,	+.0 .00 .00 +.0	(F (F 🖂 ·	• 🕭 • 🛕 • .			
0 🗳 🖬 🔒	a 🛛 🖤	X 🖻 🖬	l 🝼 🗠	• C4 + 🍓	Σ ƒ* 🔂		🗓 极 150%	• 🤉 🛛 📩	🔁 🛛 🕰 🛉		
dutility the	lik re a			+- an -	2.14	ata _				op op p.,	

. .

12	Final summa	ary data fo	r all meas							
13	Name	Weighted	Combined	UncTypeA	UncTypeB	Mean	Stddev	ESE	count	SS
14										
15	sir10	-56.84	0.07	0.06	0.04	-56.84	0.20	0.04	24	
16	sir8	-23.51	0.04	0.03	0.03	-23.51	0.09	0.02	24	
17	sir3	-9.76	0.05	0.03	0.03	-9.76	0.12	0.02	36	
18	sir1	0.39	0.05	0.04	0.04	0.39	0.15	0.02	36	
19	sir2	-5.29	0.05	0.03	0.04	-5.29	0.13	0.02	30	
20	18o-enr_dil1	175.59	0.31	0.23	0.20	175.59	0.73	0.15	24	
21	18o-enr_dil2	89.02	0.19	0.15	0.12	89.02	0.53	0.11	24	
22	18o-enr_dil3	79.01	0.16	0.12	0.11	79.01	0.40	0.08	24	
23	18o-enr_dil11	-0.74	0.05	0.04	0.04	-0.74	0.11	0.02	24	
24	18o-enr_dil21	-0.86	0.05	0.03	0.04	-0.86	0.06	0.01	24	
25	18o-enr_dil31	-0.90	0.05	0.03	0.04	-0.90	0.09	0.02	24	
26										
27										
28										
29										
30										
Ñ,	🕩 🕨 🗌 Impo	rtedRawdat	ta <u>/</u> 2H-Da	ata / 2H_(Calib 📈 2H-	com 🛛 🖣 👘	1			▶.
		hapes 🕶 🔨 🌂 🗖	0 🔮 🖪 🗕	ಶಿ - 🚣 - 🛓 - ≣	= = =	•				Xev
	Ready								NUM	

_ 8 × _ 8 ×

SICalib – How can it help you?

- Requirement: two ILS standards for calibration (to be measured two times per run to assess drift)
- Reference values of ILS standards
- Knowledge on typical reproducibility for used analytical method (by QC)
- Data import possible for all instruments
- Consistent memory/drift correction methods
- Combined uncertainty automatically calculated
- Facilitates proper data reporting
- Compatible with LabData free SQL based database for isotope laboratories (Axel Suckow, CSIRO)

Thank you for your attention!

More this afternoon...

Agency